• Title/Summary/Keyword: delay effect

Search Result 1,571, Processing Time 0.025 seconds

General Inundation Modeling of Paddy Field Districts Considering Drainage Delay (배수지연을 고려한 논 지구의 범용 침수 모의 기법 개발)

  • Jun, Sang Min;Lee, Hyun Ji;Hwang, Soon Ho;Song, Jung-Hun;Choi, Soon-Kun;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.87-96
    • /
    • 2019
  • The objective of this study was to develop a general inundation modeling technique considering the effect of drainage delay in the paddy field districts. In most studies, farmland inundation simulations have been conducted using previously developed watershed models. However, the water cycle in the paddy fields has a different structure from that of the general watershed, and the effect of the drainage delay should be considered. In this study, the drainage delay algorithm was developed using water balance equation, and the inundation modeling was performed for inundation-prone paddy fields located near Doowol stream. As a result, the depth of inundation was 43.1 cm and 45.2 cm, respectively, due to the 100-year and 200-year frequency rainfall. With the operation of drainage pump ($0.1m^3/s$), inundation depths decreased by 5.8 cm and 6.0 cm, respectively, and inundation time reduced by 20 hours and 21 hours, respectively for the 100-year and 200-year frequency rainfall. The result showed that the general inundation modeling technique developed in this study could reflect the effect of drainage delay due to the rise of external water level and the flooding reduction effect by operation of drainage pump. The results of this study are expected to be useful to establish measures for damage caused by farmland inundation.

Time delay study for semi-active control of coupled adjacent structures using MR damper

  • Katebi, Javad;Zadeh, Samira Mohammady
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1127-1143
    • /
    • 2016
  • The pounding phenomenon in adjacent structures happens in severing earthquakes that can cause great damages. Connecting neighboring structures with active and semi-active control devices is an effective method to avoid mutual colliding between neighboring buildings. One of the most important issues in control systems is applying online control force. There will be a time delay if the prose of producing control force does not perform on time. This paper proposed a time-delay compensation method in coupled structures control, with semi-active Magnetorheological (MR) damper. This method based on Newmark's integration is adopted to mitigate the time-delay effect. In this study, Lyapunov's direct approach is employed to compute demanded voltage for MR dampers. Using Lyapunov's direct algorithm guarantees the system stability to design a controller based on feedback. Because of the strong nonlinearity of MR dampers, the equation of motion of coupled structures becomes an involved equation, and it is impossible to solve it with the common time step methods. In present paper modified Newmark-Beta integration based on the instantaneous optimal control algorithm, used to solve the involved equation. In this method, the response of a coupled system estimated base on optimal control force. Two MDOF structures with different degrees of freedom are finally considered as a numeric example. The numerical results show, the Newmark compensation is an efficient method to decrease the negative effect of time delay in coupled systems; furthermore, instantaneous optimal control algorithm can estimate the response of structures suitable.

Time-Delayed and Quantized Fuzzy Systems: Stability Analysis and Controller Design

  • Park, Chang-Woo;Kang, Hyung-Jin;Kim, Jung-Hwan;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.274-284
    • /
    • 2000
  • In this paper, the design methodology of digital fuzzy controller(DFC) for the systems with time-delay is presented and the qualitative effects of the quantizers in digital implementation of a fuzzy controllers are investigated. We propose the fuzzy feed-back controller whose output is delayed with unit sampling period and period and predicted. the analysis and the design problem considering time-delay become very easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the digital fuzzy system with time-delay is solved by linear matrix inequality(LMI) theory. Furthermore, we analyze the stability of the quantized fuzzy system. Our results prove that when quantization os taken into account, one only has convergence to some small neighborhood about origin. We develop a fuzzy control system for backing up a computer-simulated truck-trailer with the consideration of time-delay and quantization effect. By using the proposed method, we analyze the quantization effect to the system and design a DFC which guarantees the stability of the control system in the presence of time-delay.

  • PDF

The Effect of Time Delay on Adaptive QAM Schemes in Mobile Multimedia Communications (이동 멀티미디어 통신에서 적응 QAM 변조의 시간지연에 대한 영향)

  • Chung, Yeon-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.236-239
    • /
    • 2001
  • This paper provides a comprehensive study of the effect of time delay on adaptive transmission methods. By adaptive we mean that the transmission of data is made adaptive according to channel conditions. That is, the modulation level at the transmitter is carefully controlled for maximizing bandwidth efficiency, on the basis of the observation of instantaneous channel characteristics. By making use of the simulator developed for the present work, a large number of channel propagation environments including the models proposed in 3GPP were submitted to the simulator and the performance with respect to both time delay and SNR is observed. The results show that the performance is very sensitive to channel delay and in some cases the performance shows irreducible BER (IBER). A large amount of delay together with a high fading rate greatly affects the performance of adaptive transmission systems.

  • PDF

The Effect of Time Delay on Adaptive QAM Schemes in Mobile Multimedia Communications (이동 멀티미디어 통신에서 적응 QAM 변조의 시간지연에 대한 영향)

  • Chung, Yeon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.2
    • /
    • pp.337-342
    • /
    • 2001
  • This paper provides a comprehensive study of the effect of time delay on adaptive transmission methods. By adaptive we mean that the transmission of data is made adaptive according to channel conditions. That is, the modulation level at the transmitter is carefully controlled for maximizing bandwidth efficiency, on the basis of the observation of instantaneous channel characteristics. By making use of the simulator developed for the present work, a large number of channel propagation environments including the models proposed in 3GPP were submitted to the simulator and the performance with respect to both time delay and SNR is observed. The results show that the performance is very sensitive to channel delay and in some cases the performance shows irreducible BER (IBER). A large amount of delay together with a high fading rate greatly affects the performance of adaptive transmission systems.

  • PDF

Performance Analysis of the Satellite Communication System Including the Grop Delay Characteristics (군지연 특성을 고려한 위성통신 시스템의 성능 분석)

  • 맹준호;유흥균;김기근;이대일;김도선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.265-270
    • /
    • 2004
  • This paper addresses the effect of group delay in satellite communication system. Phase of signal is distorted by the non-constant group delay. Group delay can be modeled as linear, parabolic and cubic type according to the polynomial characteristic. We investigate BER performance of satellite communication system with each 3 kinds of group delay. As signal bandwidth becomes wider, group delay makes more influence on the signal. BNR performance of satellite communication system is found when data rates are 1Mbps, 4Mbps and 8Mbps. Convolution coding with the code rate of 1/2 or 7/8 is used. At BER =10$\^$-5/, system with group delay needs more SNR of minimum 0.3㏈ to maximum 4.4㏈ than system without group delay. The worst case of BER performance happens in the linear group delay, 7/8 punctured convolution coding and 8 Mbps. The required SNR is increased by 4.4㏈ at this worst case.

Performance Analysis for Group Delay and Non-linear Characteristics in High Speed Data Satellite Communication System (초고속 위성통신 시스템의 군 지연 및 비 선형 특성에 대한 영향 분석)

  • 김영완;송윤정;김내수
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.113-116
    • /
    • 2000
  • The effect due to group delay and non linear characteristics in high speed data satellite channel was represented in this paper. Based on the modeling of group delay and non linear characteristics the performance was analyzed in ka band satellite channel. The group delay and non-linear characteristics in high speed data transmission severely affect the system performance. The more Eb/No is required to satisfy the required system performance. The optimum operating points of HDR satellite transmission system are implemented by considering analyzed results for channel characteristics

  • PDF

On the long-term stability of the Y4KCam shutter

  • Lee, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.82.1-82.1
    • /
    • 2015
  • We investigate the long-term spatial drift of the center and the temporal variation of the shutter delay time map of Y4KCam mounted on the CTIO 1.0m telescope. We have collected shutter delay time maps for over 7 years as a part of long-term survey program. We find that the center of the shutter delay time map can drift up to $450{\mu}m$ on the CCD. This effect can result in a small amount of error unless the proper shutter delay time correction, but it does not appear to cause any significant problems in photometric measurements. We obtain the mean value of the shutter delay time of $69.1{\pm}0.9$ msec and find no temporal variation of the shutter delay time of Y4KCam for over 7 years, indicative of the mechanical stability of the shutter. We suggest that using a master shutter delay time correction frame would be sufficient to achieve high precision photometry and this does not add up errors more than ~ 2.5 mmag across the CCD frame with exposure times longer than 1 sec.

  • PDF

Sliding Mode Control for Robust Stabilization of Uncertain Input-Delay Systems

  • Roh, Young-Hoon;Oh, Jun-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.98-103
    • /
    • 2000
  • This paper is concerned with a delay-dependent sliding mode scheme for the robust stabilization of input-delay systems with bounded unknown uncertainties. A sliding surface based ona predictor is proposed to minimize the effect of the input delay. Then, a robust control law is derived to ensure the existence of a sliding mode on the surface. In input-delay systems, uncertainties given during te delayed time are not directly controlled by the switching control because of causality prolem of them. They can influence the stability of the system in the sliding mode. Hence, a delay-dependent stability analysis for reduced order dynamics is employed to estimate maximum delay bound such that the system is globally asymptotically stable in the sliding mode. A numerical example is given to illustrate the design procedure.

  • PDF