• Title/Summary/Keyword: delamination.

Search Result 996, Processing Time 0.028 seconds

Effect of Residual Stress on Raman Spectra in Tetrahedral Amorphous Carbon(ta-C) Film

  • Shin, Jin-Koog;Lee, Churl-Seung;Moon, Myoung-Woon;Oh, Kyu-Hwan;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.135-135
    • /
    • 1999
  • It is well known that Raman spectroscopy is powerful tool in analysis of sp3/sp3 bonding fraction in diamond-like carbon(DLC) films. Raman spectra of DLC film is composed of D-peak centered at 1350cm-1 and G-peak centered at 1530cm-1. The sp3/sp3 fraction is qualitatively acquired by deconvolution method. However, in case of DLC film, it is generally observed that G-peak position shifts toward low wavenumber as th sp3 fraction increases. However, opposite results were frequently observed in ta-C films. ta-C film has much higher residual compressive stress due to its high sp3 fraction compared to the DLC films deposited by CVD method. Effect of residual stress on G-peak position is most recommendable parameter in Raman analysis of ta-C, due to its smallest fitting error among many parameters acquired by peak deconvolution of symmetric spectra. In current study, the effect of residual stress on Raman spectra was quantitatively evaluated by free-hang method. ta-C films of different residual stress were deposited on Si-wafer by modifying DC-bias voltage during deposition. The variation of the G-peak position along the etching depth were observed in the free-hangs of 20~30${\mu}{\textrm}{m}$ etching depth. Mathematical result based on Airy stress function, was compared with experimental results. The more reliable analysis excluding stress-induced shift was possible by elimination of the Raman shift due to residual compressiove stress.

  • PDF

Beam Tests for Static and Fatigue Interface Shear Strength between Old and Njew Concretes (신구콘크리트 계면의 전단강도 측정을 위한 정하중 및 피로하중 보실험)

  • 최동욱
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.137-147
    • /
    • 1997
  • Interface shear strength of' concrete under static loading and deterioratiion of interface strength by fatigue loading in shear were experimentally investigated using composite beam test specimens. Thirteen beams were constructed. Five composite beams were tested statically until interface delaminations were observed in the static tests. Seven composite beam and one monolithically cast beam were subjected to two to three million cycles of fatigue load. Test variables were interface roughness, interface shear reinforcement, and presence of interface bond. The average interface shear strength of the composite beams with bonded-rough interface was 6, 060 kPa. No interface delamination was observed after cycling for the composite beams with bonded - rough interface and interface bond was not influenced by repeated application of the shear stress of 2.000 kPa(about 1/3 of the static interface shear strength). Smooth interface and unbonded-rough interface with shear reinforcement deteriorated under repeated shear loading.

Thermal Transient Characteristics of Die Attach in High Power LED Package

  • Kim Hyun-Ho;Choi Sang-Hyun;Shin Sang-Hyun;Lee Young-Gi;Choi Seok-Moon;Oh Yong-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.331-338
    • /
    • 2005
  • The rapid advances in high power light sources and arrays as encountered in incandescent lamps have induced dramatic increases in die heat flux and power consumption at all levels of high power LED packaging. The lifetime of such devices and device arrays is determined by their temperature and thermal transients controlled by the powering and cooling, because they are usually operated under rough environmental conditions. The reliability of packaged electronics strongly depends on the die attach quality, because any void or a small delamination may cause instant temperature increase in the die, leading sooner or later to failure in the operation. Die attach materials have a key role in the thermal management of high power LED packages by providing the low thermal resistance between the heat generating LED chips and the heat dissipating heat slug. In this paper, thermal transient characteristics of die attach in high power LED package have been studied based on the thermal transient analysis using the evaluation of the structure function of the heat flow path. With high power LED packages fabricated by die attach materials such as Ag paste, solder paste and Au/Sn eutectic bonding, we have demonstrated characteristics such as cross-section analysis, shear test and visual inspection after shear test of die attach and how to detect die attach failures and to measure thermal resistance values of die attach in high power LED package. From the structure function oi the thermal transient characteristics, we could know the result that die attach quality of Au/Sn eutectic bonding presented the thermal resistance of about 3.5K/W. It was much better than those of Ag paste and solder paste presented the thermal resistance of about 11.5${\~}$14.2K/W and 4.4${\~}$4.6K/W, respectively.

  • PDF

Reconstruction of Damage-Induced Impact Force of Gr/Ep Composite Laminates Using Piezoelectric Thin Film Sensor Signals (고분자 압전센서 신호를 이용한 Gr/Ep 복합재 적층판의 손상유발 충격하중의 복원)

  • 박찬익;김인걸;이영신
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.7-13
    • /
    • 2002
  • The piezoelectric thin film sensor has good characteristics to observe the impact responses of composite structures. The capabilities for monitoring impact behavior of Gr/Ep laminates subjected to damage-induced impact using the PVDF(polyvinylidene fluoride) film sensor were examined. For a series of low-velocity impact tests from low energy to damage-induced energy, simulated sensor signals were compared with measured signals and the PVDF film sensor. Local impact damages(matrix cracking and delamination) were found at three impact tests, but the measured signals agreed well with the simulated sensor signals based on the linear relationship between the impact forces and the PVDF film sensor signals. And the inverse technique was applied to reconstruct the impact forces using the PVDF film sensor signals. Most of reconstructed impact forces had good agreement with the measured forces. The comparison results showed that the local damage due. to low-velocity impact didn't disturb the global impact responses of composite laminates and the reconstruction of impact forces from PVDF sensor signals wasn't affected by the local damage.

Determination of Elastic Work Factor of Graphite/Epoxy Composites Subjected to Compressive Loading under Hydrostatic Pressure Environment (정수압 환경에서 압축하중을 받는 Graphite/Epoxy 적층복합재의 탄성일인자 결정)

  • 신명근;이경엽;이중희
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.14-18
    • /
    • 2002
  • In the present study, we investigated the effects or hydrostatic pressure and stacking sequence on the elastic work factor to determine compressive fracture toughness of graphite/epoxy laminated composites in the hydrostatic pressure environment. The stacking sequences used were unidirectional. $\textrm{[}0^{\circ}\textrm{]}_{88}$ and multi-directional, $\textrm{[}0^{\circ}/\pm/45^{\circ}/90^{\circ}\textrm{]}_{11s}$. The hydrostatic pressures applied for a $\textrm{[}0^{\circ}\textrm{]}_{88}$ case were 0.1 MPa, 70MPa, 140MPa. and 200MPa. The hydrostatic pressures applied for a $\textrm{[}0^{\circ}/\pm/45^{\circ}/90^{\circ}\textrm{]}_{11s}$ case were 0.1MPa, 100MPa, 200MPa, and 300MPa. It was found that the elastic work factor was not affected by the hydrostatic pressure and the stacking sequence. Also, it was found that the elastic work factor decreased in a linear fashion with delamination length.

Thermomechanical Analysis of Functionally Gradient $Al-SiC_p$ Composite for Electronic Packaging (전자패키지용 경사조성 $Al-SiC_p$복합재료의 열.기계적 변형특성 해석)

  • 송대현;최낙봉;김애정;조경목;박익민
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.23-29
    • /
    • 2000
  • The internal residual stresses within the multilayered structure with sharp interface induced by the difference in thermal expansion coefficient between the materials of adjacent layers often provide the source of failure such as delamination of interfaces etc. Recent development of the multilayered structure with functionally graded interface would be the solution to prevent this kind of failure. However a systematic thermo-mechanical analysis is needed for the customized structural design of multilayered structure. In this study, theoretical model for the thermo-mechanical analysis is developed for multilayered structures of the $Al-SiC_p$ functionally graded composite for electronic packaging. The evolution of curvature and internal stresses in response to temperature variations is presented for the different combinations of geometry. The resultant analytical solutions are used for the optimal design of the multilayered structures with functionally graded interface as well as with sharp interface.

  • PDF

Evaluation of Degradation of Isothermally Aged Plasma-Sprayed Thermal Barrier Coating (플라즈마 용사 열차폐 코팅의 열화 평가)

  • Koo, Jae-Mean;Seok, Chang-Sung;Kang, Min-Sung;Kim, Dae-Jin;Lee, Dong-Hoon;Kim, Mun-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.475-480
    • /
    • 2010
  • The thermal barrier coating of a gas turbine blade was degraded by isothermal heating in a furnace and by varying the exposure time and temperature. Then, a micro-Vickers hardness test was conducted on the cross section of the bond coat and Ni-based superalloy substrate. Further, the thickness of TGO(Thermally Grown Oxide) was measured by using an image analyzer, and the changes in the microstructure and element contents in the coating were analyzed by using an optical microscope and by performing SEM-EDX analysis. No significant change was observed in the Vickers hardness of the bond coat when the coated specimen was degraded at a high temperature; delamination was observed between the top coat and the bond coat when the coating was degraded for 50 h at a temperature $1,151^{\circ}C$.

Properties of CFRP by VaRTM Process and Its Application to Automobile Engine Hood (VaRTM 공법에 의해 제조된 CFRP의 특성평가 및 자동차 엔진 후드에 응용)

  • Kim, Y.H.;Choi, B.G.;Son, J.H.;Cho, Y.D.;Eum, S.H.;Woo, B.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.377-381
    • /
    • 2005
  • The using of composite material is an aviation field but it changes into a general industry. Especially composites are expanding the use on transportation vehicles like automobiles, ships, and aircraft. The main factor of this expansion is high specific strength. It can supply a high quality and efficiency of energy. But manufacturing of composite products requires many raw materials and tooling cost for special process, so we needs a reduction of these costs to achieve best efficiency. In the present study, we contrast the change of mechanical and physical properties between VaRTM(Vacuum Assisted Resin Transfer Molding) and hand lay-up process. VaRTM process can offer a high quality the same as autoclave products, and low cost like hand lay-up process. In the results of mechanical tests, VaRTM specimen is stronger than hand lay-up specimen and hand lay-up specimen became delamination. In the results of physical tests, the resin content of VaRTM specimen is lower than hand lay-up specimen. On micrograph, the strength of specimen by VaRTM between fiber and resin is stronger than that of one by hand lay-up. And the specimen by hand lay-up contains more defects than one by VaRTM. So, VaRTM process can practically apply for automobile engine hood. This paper shows that VaRTM process is one of the most suitable processes for composite parts of automobile.

  • PDF

A Study on Low Velocity Impact and Residual Compressive Strength for Carbon/Epoxy Composite Laminate (탄소섬유/에폭시 복합적층판의 저속 충격 및 잔류 압축강도에 관한 연구)

  • Lee, S.Y.;Park, B.J.;Kim, J.H.;Lee, Y.S.;Jeon, J.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.250-255
    • /
    • 2000
  • Damage induced by low velocity impact loading in aircraft composite laminates is the form of failure which is occurred frequently in aircraft. Low velocity impact can be caused either by maintenance accidents with tool drops or by in-flight impacts with debris. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and the carrying load of the composite laminates is considerably reduced. The reduction of strength and stiffness by impact loading occurs in compressive loading due to laminate buckling in the delaminated areas. The objective of this study is to determine inside damage of composite laminates by impact loading and to determine residual compressive strength and the damage growth mechanisms of impacted composite laminates. For this purpose a series of impact and compression after impact tests are carried out on composite laminates made of carbon fiber reinforced epoxy resin matrix with lay up pattern of $[({\pm}45)(0/90)_2]s$ and $[({\pm}45)(0)_3(90)(0)_3({\pm}45)]$. UT-C scan is used to determine impact damage characteristics and CAI(Compression After Impact) tests are carried out to evaluate quantitatively reduction of compressive strength by impact loading.

  • PDF

The Improvement of Interlaminar Shear Strength for Low Density 2-D Carbon/Carbon Composites by Additives (첨가제에 의한 저밀도 2-D 탄소/탄소 복합재의 층간전단강도 개선)

  • 손종석;정구훈;주혁종
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.845-853
    • /
    • 2000
  • The optimum cure cycle and carbonization condition were selected by the DSC and TGA analysis and green bodies were prepared by the method of hot press molding and then carbonized up to 140$0^{\circ}C$. Additives such as graphite powder, carbon black, milled carbon fiber and carbon fiber mat, which were considered to be effective in improving the interlaminar shear strength, were also added to check their effects on the density and porosity of products. Then, their relations with mechanical properties such as ILSS and flexural strength were investigated. The composites added 9 vol% of graphite powder showed the greatest values of ILSS and flexural strength. Otherwise, in case of adding carbon black, the composites showed the slight improvement of ILSS at its contents of 3 vol% but the flexural strength was decreased. When milled carbon fiber and carbon fiber mat were added, the lack of resin and the heat shrinkage during the carbonization caused the delamination, resulting in decreasing the density, ILSS and flexural strength.

  • PDF