• Title/Summary/Keyword: delamination.

Search Result 997, Processing Time 0.023 seconds

Delamination Detection at a Bolt Hole Using a Built-in Piezoelectric Active Sensor Array (배열 압전 능동 센서를 이용한 볼트 구멍의 층간분리 탐지)

  • Park, Chan-Yik;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.550-557
    • /
    • 2008
  • Delamination damage at a bolt hole in a composite stiffened panel was detected using a built-in piezoelectric active sensor array. Various signal processing techniques were used to detect an invisible small scale delamination around a fastener hole due to localized transverse loading. A built-in piezoelectric sensor array was used to generate diagnostic signals and to measure response signals. Then, the response signals were processed to extract damage-sensitive features. Damage indexes were calculated to estimate the severity and location of the damage from the features.

A Research on the reappearance of delamination and the characteristic of LED package by thermal shock test (열충격 시험을 통한 LED Package의 박리재현 및 특성에 관한 연구)

  • Jang, In-Hyeok;Lim, Houng-Woo
    • Journal of Applied Reliability
    • /
    • v.13 no.3
    • /
    • pp.207-216
    • /
    • 2013
  • This paper, we classified LED failure mechanisms that occur due to the delamination and analyzed each of the mechanism that gives the LED PKGs the effect. Usually, the LED is composed of several materials which are LED chips, gold wire, phosphor, epoxy resin, adhesive, reflector and lead frame. These different materials are usually delaminated in trouble conditions which are huge temperature difference, hot and humid or mechanical shocked. When the components are delaminated, a luminance will be lost and moisture be absorbed easily, a thermal resistance be increased attendantly. In this paper, we experimented to investigate failure mechanism of the thermal resistance and failure mechanism of the decrease of luminance that occur due to the delamination. A thermal shock test was performed to reproduce this phenomena by subjecting samples to a cold-hot cyclling process between $-30^{\circ}C$(15min) and $110^{\circ}C$(15min). The samples were inspected at 200, 600 and 1,000 cycles. We measured feature of LED using the spatial analyzer, optical microscope, thermal resistance, photometer, scanning electron microscope (SEM). As a result, the progression of the crack and the thermal resistance and decrease in luminance are proportional to number of thermal shock.

Impact damage and residual bending strength of CFRP composite laminates involved difference of fiber stacking orientation and matrics

  • Sim, Jae-Ki;Yang, In-Young;Oh, Taek-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.152-162
    • /
    • 1993
  • The purpose of this study is to investigate problems of residual bending strength and the impact damage experimentally when CFRP composite laminates are subjected to Foreign object damage. The specimens composed of four types of CR/EPOXY and a CF/PEEK composite laminates which involved difference of fiber stracking orientation and matrics. The result were summariged as follows : 1) It is found that both orthotropic and guasi-isotropic composite laminates are increasimg lineally between impact energy and damage delamination area. 2) Delamination devel- opment energy(mm$^{2}$J) OF cf/epoxy composite aminates is less than that of CF/PEEK. 3) When impact energy is applied to specimens within 3J, the residual strength of orthotropic is greater than guasi-isotropic composite laminates. On the other hand, it is predicted that residual bending strength of orthotropic composite laminates is less than that of quasi-isotropic when impact energy is more thaen 3J. 4) It is found in CF/PEEK that for the impact side compression, residual of bending strength versus impact energy is almost constant, while in case of impact side tension, residual bending strength is decreased rapidly near 1.2J. of impact energy due to the effect of delamination buckling.

  • PDF

Crack Growth and Debonding Behaviors of the Pre-cracked RC Beams Repaired with Carbon Fiber Sheets (사전균열로 손상된 RC 보의 탄소섬유시트 보수 후의 균열성장 및 박락거동)

  • Kim, Chung Ho;Ko, Sin Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.121-129
    • /
    • 2006
  • This study look into the mechanisms of growth and magnification of the cracks and delamination in the pre-cracked RC beams repaired with carbon fiber sheets. The experimental parameters were loading type, loading speed and crack. In the experiments, it was confirmed that a failure of beams began with development and propagation of the stepped delamination in the below the loading point due to the rapid change of shear force, but mechanisms of the failure were not influenced with loading type, loading speed and pre-cracks. Particularly, in the case of beams having the pre-cracks, growth of crack concentrated at the special crack below the loading point and led to failure of the beam by delamination due to magnification of crack.

A Study on the Influence Factors on Flexural and Thickness Modes in the Impact-echo Test (충격반향기법에서의 휨 모드 및 두께 모드의 영향인자에 대한 연구)

  • Oh, Tae-Keun;Park, Jongl-Il;Byun, Yoseph;Lee, Young-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.659-666
    • /
    • 2015
  • In this paper, various influence factors on the impact-echo test which is an effective method in characterizing defects such as such as the delamination in the concrete structures were studied. The side to thickness ratio(a/h), the relative position of impacting and sensing points over the delamination that have great effects on the flexural and impact-echo(thickness) modes were investigated and examined by the parametric finite element analysis. As a result, the flexural modes dominate in the case of a/h > 2 and the thickness mode was more evident when a/h < 2. With regard to the relative position of impact source and sensing point to the defect, the flexural modes dominate even when either the loading or sensing point was over the delamination defect. However, the thickness mode prevails when both the impacting and sensing points are over the solid region beyond the delamination area.

Analysis of the machinability of GFRE composites in drilling processes

  • Khashaba, Usama. A.;Abd-Elwahed, Mohamed S.;Ahmed, Khaled I.;Najjar, Ismail;Melaibari, Ammar;Eltaher, Mohamed A
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.417-426
    • /
    • 2020
  • Drilling processes in fiber-reinforced polymer composites are essential for the assembly and fabrication of composite structural parts. The economic impact of rejecting the drilled part is significant considering the associated loss when it reaches the assembly stage. Therefore, this article tends to illustrate the effect of cutting conditions (feed and speed), and laminate thickness on thrust force, torque, and delamination in drilling woven E-glass fiber reinforced epoxy (GFRE) composites. Four feeds (0.025, 0.05, 0.1, and 0.2 mm/r) and three speeds (400, 800, and 1600 RPM) are exploited to drill square specimens of 36.6×36.6 mm, by using CNC machine model "Deckel Maho DMG DMC 1035 V, ecoline". The composite laminates with thicknesses of 2.6 mm, 5.3 mm, and 7.7 mm are constructed respectively from 8, 16, and 24 glass fiber layers with a fiber volume fraction of about 40%. The drilled specimen is scanned using a high-resolution flatbed color scanner, then, the image is analyzed using CorelDraw software to evaluate the delamination factor. Multi-variable regression analysis is performed to present the significant coefficients and contribution of each variable on the thrust force and delamination. Results illustrate that the drilling parameters and laminate thickness have significant effects on thrust force, torque, and delamination factor.

Experiments on the Detection of Delamination in FRP Reinforced Concrete (탄소섬유 보강 콘크리트의 박리 탐사 실험)

  • Rhim, Hong-Chul;Jung, Hang-Chul;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2007
  • With a growing concern about the state of infrastructure worldwide, the demand for the development of reliable nondestructive testing techniques (NDT) is ever increasing. Among possible NDT techniques, microwave method is proven to be effective in fast and non-contact inspection of concrete structures and inclusions inside concrete. It is also found that the microwave method has a potential in detecting the delamination between fiber reinforced polymers (FRP) plate and concrete. On the other hand, ultrasonic method can be another way to find the delamination. In this paper, the research work needed for the development of a reliable microwave method and ultrasonic method is studied in the measurements of concrete specimens reinforced with FRP. Concrete specimens are made with FRP and artificial delamination inside. A microwave measurement system with hom antennas with high center frequency and broad frequency bandwidth are used to image inside concrete specimens for the detection of debonding between concrete and FRP. Also, ultrasonic method is used for the same condition. Both results are compared with each other.

Delamination Detection of FRP Sheet Reinforced Concrete Using Microstrip Patch Antenna (Microstrip Patch Antenna를 이용한 탄소섬유시트 보강콘크리트의 박리 탐사)

  • Rhim, Hong-Chul;Lee, Hyo-Seok;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.134-141
    • /
    • 2007
  • A series of experimental work has been conducted to evaluate the capability of microstrip patch antenna system in detecting delamination in fiber reinforced Plastic (FRP) sheet reinforced concrete. For that purpose, a prototype microstrip patch antenna was developed with 15 GHz center frequency and 1 GHz bandwidth. For the comparison, a horn antenna with 15 GHz center frequency and 10 GHz bandwidth was used for the measurements of the same specimens. The laboratory sire specimens have the dimensions of 600 mm (length) $\times$ 600 mm (width) $\times$ 50mm (thickness) with a series of delaminations of 300 mm (length) $\times$ 300mm (width) $\times$ 5, 10, 15 mm (thickness). FRP of 1.5 mm thickness and epoxy of 3 mm thickness were placed on the top of artificially created delamination to represent actual FRP reinforced concrete condition. In all cases, the delamination has deen successfully identified. Also, it was shown that imaging results in microstrip patch antenna were improved by signal processing.

Evaluation of Delamination of Dental Composite Restoration using Infrared Lock-in Thermography (열화상 기술을 이용한 치아/복합레진 수복부의 박리 평가)

  • Gu, Ja-Uk;Choi, Nak-Sam
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.236-240
    • /
    • 2012
  • The purpose of this study was to investigate the feasibility on the detection of dental composite delamination using a lock-in thermography method. Amplitude and phase images of detected thermal signals were analyzed according to the lock-in frequencies. At a lock-in frequency of 0.05 Hz, the ligament thickness of 0.5 mm in the specimen exhibited the highest amplitude contrast between defective area and sound area. For ligament thicknesses of 1 mm and 1.5 mm, delamination detection was possible at 0.025 Hz and 0.01 Hz through the amplitude differences. At lock-in frequencies of 0.006 Hz and 0.01 Hz, ligament thickness 0.5 mm exhibited the highest phase contrast. For ligament thicknesses of 1 mm and 1.5 mm, the phase contrast exhibited possible detection of delamination at 0.006-0.1 Hz.

Modeling of Electromagnetic Wave Propagation for Detection of Bond Delamination in Concrete (콘크리트 보강재 박리 검사를 위한 전자파 모델링)

  • 남연수;임홍철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.261-269
    • /
    • 2004
  • The existing concrete beams can be retrofitted or reinforced by attaching carbon fiber or glass fiber sheet beneath the beams. Although diverse design methods and application techniques of the retrofitting are studied and developed, the testing method of examining retrofitted beams have not been put into practice yet. In this study, a bond delamination has been modeled and studied to provide a basis for the development of actual testing equipments. For this purpose, Gaussian and sinusoidal waves with 3GHz and 5GHz center frequency are used as an incident wave and 1mm and 3mm bond delamination under the reinforcement are modeled. In the modeling, Finite Difference-Time Domain algorithm is used to investigate the behavior of electromagnetic waves in concrete. The results have shown that 5GHz waves are suitable for the detection of delamination.