• 제목/요약/키워드: delamination rate

검색결과 141건 처리시간 0.027초

ECMP 공정에서 전해질에 따른 Cu 표면 특성 평가 (Surface Characterization of Cu as Electrolyte in ECMP)

  • 권태영;김인권;조병권;박진구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.528-528
    • /
    • 2007
  • Cu CMP widely has been using for the formation of multilevel metal interconnects by the Cu damascene process. And lower dielectric constant materials are required for the below 45nm technology node. As the dielectric constant of dielectric materials are smaller, the strength of dielectric materials become weaker. Therefore these materials are easily damaged by high down pressure during conventional CMP. Also, technical problems such as surface scratches, delamination, dishing and erosion are also occurred. In order to overcome these problems in CMP, the ECMP (electro-chemical mechanical planarization) has been introduced. In this process, abrasive free electrolyte, soft pad and low down force were used. The electrolyte is one of important factor to solve these problems. Also, additives are required to improve the removal rate, uniformity, surface roughness, defects, and so on. In this study, KOH and $NaNO_3$ based electrolytes were used for Cu ECMP and the electrochemical behavior was evaluated by the potentiostat. Also, the Cu surface was observed by SEM as a function of applied voltage and chemical concentration.

  • PDF

불소 첨가/미첨가 인공타액 용액에서 연마 및 마스킹 조건이 적층제조 Ti-6Al-4V 합금의 동전위분극시험 결과에 미치는 영향 (Effects of Grinding and Masking Conditions on the Potentiodynamic Polarization Curves of Additively Manufactured Ti-6Al-4V Alloy in Artificial Saliva Solution with or Without Fluoride Ions)

  • 안경빈;장희진
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.475-483
    • /
    • 2021
  • Additively manufactured titanium alloy is one of the promising materials in advanced medical industries. However, these additively manufactured alloys show corrosion properties different from those of conventional materials due to their unique microstructure. In this study, the effect of surface roughness and masking conditions on the results of the potentiodynamic polarization tests on additively manufactured or conventional Ti-6Al-4V alloys in artificial saliva solution with or without fluoride was investigated. The results showed that the corrosion potential was slightly lower with a flat cell with an O-ring than with masking tape. The corrosion rate was decreased with decreases in the surface roughness. Localized corrosion involving delamination of the surface layer occurred at 7 ~ 9 V (SSC) on the additively manufactured alloy in solution with or without fluoride when the samples were finished with 1000-grit SiC paper, whereas localized corrosion was not observed in the specimens finished with 1-㎛ alumina paste.

GFRP/Al 복합재료의 접합부 레이저 패턴이 계면인성에 미치는 영향 (Effect of Bonding Surface Laser Patterns on Interfacial Toughness of GFRP/Al Composite)

  • 심우용;윤유성;권오헌
    • 한국안전학회지
    • /
    • 제38권2호
    • /
    • pp.1-7
    • /
    • 2023
  • Fiber-metal laminates (FMLs) and polymer matrix composites (PMCs) are formed in various ways. In particular, FMLs in which aluminum is laminated as a reinforced layer are widely used. Also, glass fiber-reinforced plastics (GFRPs) are generally applied as fiber laminates. The bonding interface layer between the aluminum and fiber laminate exhibits low strength when subjected to hot press fabrication in the event of delamination fracture at the interface. This study presents a simple method for strengthening the interface bonding between the aluminum metal and GFRP layer of FML composites. The surfaces of the aluminum interface layer are engraved with three kinds of patterns by using the laser machine before the hot press works. Furthermore, the effect of the laser patterns on the interfacial toughness is investigated. The interfacial toughness was evaluated by the energy release rate (G) using an asymmetric double cantilever bending specimen (ADCB). From the experimental results, it was shown that the strip type pattern (STP) has the most proper pattern shape in GFRP/Al FML composites. Therefore, this will be considered a useful method for the safety assessment of FML composite structures.

PEMFC 금속분리판의 내식성에 미치는 DLC 코팅층의 두께 및 결함의 영향 (Effects of Thickness and Defects of DLC Coating Layer on Corrosion Resistance of Metallic Bipolar Plates of PEMFCs)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제23권3호
    • /
    • pp.235-245
    • /
    • 2024
  • DLC coatings have been widely applied in industrial fields that require high corrosion resistance due to their excellent mechanical characteristics and chemical stability. In this research, effects of DLC coating thickness and defects on corrosion resistance were investigated for application of metallic bipolar plates in polymer membrane electrolyte fuel cells (PEMFCs). Results revealed that a DLC coating thickness of 0.7 ㎛ could lead to a defect size reduction of about 75.9% compared to that of 0.3 ㎛.As a result of potentiodynamic polarization experiments, the current density under a potential of 0.6 V was measured to be less than 1 ㎂/cm2,which was an excellent value. Inparticular, the delamination ratio and the decrease rate of maximum pitting depth were up to 84.8% and 63.3%, respectively, with an increase in the DLC coating thickness. These results demonstrate that DLC coating thickness and defects are factors that can affect corrosion resistance of DLC coating and its substrate.

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • 제30권6호
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

족부보장구(A.F.O.) 판스프링용 Glass/Epoxy와 Aramid/Epoxy의 충격속도 변화에 따른 손상 거동 (The Damage Behavior of Glass/Epoxy and Aramid/Epoxy in Leaf Spring of Ankle Foot Orthosis (A.F.O) due to the Various Impact Velocities)

  • 송삼홍;오동준;정훈희;김철웅
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1526-1533
    • /
    • 2004
  • The needs of walking assistant device such as the Ankle Foot Orthosis (A.F.O) are getting greater than before. However, most of the A.F.O are generally imported rather than domestic manufacturing. The major reason of high import reliability is the rack of impact properties of domestic commercial products. Therefore, this research is going to focus on the evaluation of impact properties of the A.F.O which has the high import reliability. Unfortunately, these kinds of researches are not performed sufficiently. This research is going to evaluate impact energy behavior in composite materials such as the glass/epoxy (S-glass, [0/90]sub 2S/) and the aramid/epoxy (Kevlar-29, woven type, 8 ply) of ankle foot orthosis. The approach methods were as follows. 1) The history of impact load and impact energy due to the various velocities. 2) Relationship between the deflection and damage shape according to the impact velocities. 3) The behavior of absorbed energy and residual strength rate due to the various impact velocities.

Ru barrier metal을 위한 CMP 슬러리의 CMP 거동 관찰 (CMP Behaviors of CMP Slurry for Ru Barrier Metal)

  • 손혜영;김인권;박진구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.57-57
    • /
    • 2009
  • 반도체 device가 고집적화 및 다층화 되어짐에 따라 현재 사용되고 있는 구리 interconnect의 확산방지막인 Ta/TaN은 많은 문제가 발생하고 있다. 고집적화 된 반도체 소자에 적용시키기에는 Ta/TaN 확산 방지막의 고유 저항값이 매우 크고, 구리의 증착에 필요한 seed layer의 크기도 문제화 된다고 보고되어지고 있다. 이러한 이유로 인해 점차 고집적화 되어지는 반도체 기술에 맞추어 새로운 확산 방지막에 대한 연구가 현재 활발히 이루어지고 있다. 이에 새로운 확산 방지막으로써 대두되고 연구되고 있는 재료가 Ruthenium (Ru)이다. Ru은 공기 중에서 매우 안정하고 고유저항 값 또한 $13\;{\mu}{\Omega}\;cm$의 Ta에 비해 $7.1\;{\mu}{\Omega}\;cm$의 매우 작은 고유저항 특성을 가지고 있다. 또한, Ru은 구리와의 우수한 접착성으로 인해 구리의 interconnect의 형성에 있어 seed layer가 필요하지 않을 뿐만 아니라 높은 annealing 온도에서도 무시할 만큼 작은 solid solubility를 가지며 구리와의 계면에서 새로운 화합물을 형성하지 않으며 annealing시 구리의 delamination을 유발시키지도 않는다. 이에 따라, 평탄화와 소자 분리를 위하여 chemical mechanical planarization (CMP) 공정이 필요하게 되었다. 하지만, Ru의 noble한 성질과 Ru 확산방지막 CMP공정 시 노출되는 다른 이종 물질 사이의 최적화 된 selectivity를 구현하는데 많은 어려움이 있다. 이로인해 Ru 확산 방지막을 위한 CMP slurry에 대한 연구는 아직 미흡한 수준이다. 본 연구에서는 Ru이 확산방지막으로 사용되었을 때 이를 위한 CMP slurry에 대한 평가와 연구가 이루어졌다. Slurry 조성과 농도 및 pH에 따른 전기 화학적 분석을 통하여 slurry 내에서 각각의 막질들이 어떠한 상태로 존재하는지 분석해 보았다. 또한, Ru을 비롯한 이종막질들의 etch rate, removal rate와 selectivity에 대한 연구가 진행되었다. 최종적으로 Ru 확산방지막 CMP를 위한 최적화된 slurry를 제안하였다.

  • PDF

Development of Bamboo Zephyr Composite and the Physical and Mechanical Properties

  • SUMARDI, Ihak;ALAMSYAH, Eka Mulya;SUHAYA, Yoyo;DUNGANI, Rudi;SULASTININGSIH, Ignasia Maria;PRAMESTIE, Syahdilla Risandra
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권2호
    • /
    • pp.134-147
    • /
    • 2022
  • The objective of this study is to determine the effect of fiber direction arrangement and layer composition of hybrid bamboo laminate boards on the physical and mechanical properties. The raw material used was tali bamboo (Gigantochloa apus (J.A. & J.H. Schultes) Kurs) rope in the form of flat sheets (zephyr) and falcata veneer (Paraserianthes falcataria (L) Nielsen). Zephyr bamboo was arranged in three layers using water-based isocyanate polymer (WBPI) with a glue spread rate of 300 g/m2. There were variations in the substitution of the core layer with falcata veneers (hybrid) as much as two layers and using a glue spread rate of 170 g/m2. The laminated bamboo board was cold-pressed at a pressure of 22.2 kgf/cm2 for 1 h, and the physical and mechanical properties were evaluated. The results showed that the arrangement of the fiber direction significantly affected the dimensional stability, modulus of rupture, modulus of elasticity, shear strength, and screw withdrawal strength. However, the composition of the layers had no significant effect on the physical and mechanical properties. The bonding quality of bamboo laminate boards with WBPI was considered to be quite good, as shown by the absence of delamination in all test samples. The bamboo hybrid laminate board can be an alternative based on the physical and mechanical properties that can meet laminated board standards.

유리섬유 부직포가 삽입된 풍력 블레이드 인발 성형 스파캡 소재의 파괴인성 특성 평가 (Evaluation of Fracture Toughness Characteristics of Pultruded CFRP Spar-Cap Materials with Non-woven Glass Fabric for Wind Blade)

  • 김영철;주근수;박지상;이우경;강민규;김지훈
    • 풍력에너지저널
    • /
    • 제14권3호
    • /
    • pp.83-90
    • /
    • 2023
  • The purpose of this study is to evaluate the inter-laminar fracture toughness characteristics of CFRP pultrusion spar cap materials reinforced with non-woven glass fabric. Test specimens were fabricated by the infusion technique. A non-woven glass fabric and artificial defects were embedded on the middle surface between two pultruded CFRP panels. Double cantilever beam (DCB) and End Notched Flexure (ENF) tests were performed according to ASTM standards. Fracture toughness and crack propagation characteristics were evaluated with load-displacement curves and delamination resistance curves (R-Curve). The fracture toughness results were calculated by compliance calibration (CC) method. The initiation and propagation values of Mode-I critical strain energy release rate value GIc were 1.357 kJ/m2 and 1.397 kJ/m2, respectively, and Mode-II critical strain energy release rate values GIIc were 4.053 kJ/m2 for non-precracked test and 4.547 kJ/m2 for precracked test. It was found that the fracture toughness properties of the CFRP pultrusion spar-cap are influenced by the interface between the layers of CFRP and glass fiber non-woven.

Cellulose를 이용한 가식성(可食性) Film의 제조와 물리적 특성연구 (Preparation of Cellulose-Based Edible Film and its Physical Characteristics)

  • 송태희;김철재
    • 한국식품과학회지
    • /
    • 제28권1호
    • /
    • pp.1-7
    • /
    • 1996
  • Hydrocolloid film에 lipid 액을 입혀 제조한 film A와 hydrocolloid 용액에 beeswax의 함량과 용해 상태를 달리하여 제조한 film B와 C의 물리적 특성을 검토해 본 결과, 제조에 있어서는 film A보다 film B와 C의 제조가 용이하였다. 세가지 film의 두께는 0.03 mm 정도로 유의적인 차이를 나타내지 않았으며, 1-3%의 수분함량과 59-68%의 지방을 함유한 film으로 세 film 모두 백색을 나타내었다. 인장강도는 film A가 우수하였으며, 투습도에서는 lipid 액의 뚜렷한 효과로 감소하였으며 film A와 B는 유의적인 차이를 나타내지 않았다. 한편 냉동전후의 투습도에서 film A는 유의적인 차이를 나타내지 않았으나, film B와 C는 냉동 후의 투습도가 유의적으로 감소하였다. 산소투과도는 film A와 C가 유의적인 차이를 나타내지 않았다. 전자현미경으로 film의 표면특성을 관찰한 결과, film A는 지방구의 분포가 일정하였으나 B와 C는 지방구의 편재를 볼 수 있었으며 1년 저장 후 film A는 bilayer층의 delamination을 나타내는 것으로 보아 전반적인 물리적 특성은 film A가 우수하나 장기저장에 있어서는 보다 제조법이 용이한 film B와 C를 선택하는 것이 바람직할 것으로 보이며, film B와 C의 균일하지 못한 표면 형상을 개선하는 방법과 투습도 및 산소투과도를 감소시키는 것이 앞으로 개선할 과제로 여겨진다.

  • PDF