• Title/Summary/Keyword: dehydration time

Search Result 199, Processing Time 0.03 seconds

Effects of Dehydration Methods on Physical Properties of Reconstituted Instant Rice (건조방법이 복원된 즉석밥의 물리적 성질에 미치는 영향)

  • 김동관;김명환;김병용
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.4
    • /
    • pp.443-447
    • /
    • 1993
  • The physical properties of reconstituted instant rice produced by three different dehydration methods were evaluated. The rehydration ratios of reconstituted instant rice produced by air dehydration at 9$0^{\circ}C$ (process A) had higher values than those produced by freeze dehydration (process C) during entire range of rehydration. After 4min of rehydration time at 95$^{\circ}C$ , the moisture contents of reconstituted instant rice produced by process A and C were higher values than those of control(151.47%, dry basis) which was cooked by electric cooker. Regardless of dehydration method, the sizes of reconstituted instant rice (6min, 95$^{\circ}C$) had larger values than those of control. The values of hardness (H), stickiness (S) and S/H ratio of reconstituted instant rice (6min, 95$^{\circ}C$) produced by high temperature (7min, 15$0^{\circ}C$) air dehydration (process B) as the first stage prior to air dehydration at 9$0^{\circ}C$ were almost the same as those of control. The H of reconstituted instant rice decreased, while S and S/H ratio increased with increasing rehydration time. The higher values of whiteness(L) and lower values of yellowness (b) represented in reconstituted instant rice (6min, 95$^{\circ}C$) than those of control.

  • PDF

Optimization of Osmotic Dehydration Process for Manufacturing a Dried Sweet Pumpkin (건조단호박 제조를 위한 삼투건조공정의 최적화)

  • 나경민;홍주헌;차원섭;박준희;오상룡;조영제;이원영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.433-438
    • /
    • 2004
  • This study was conducted to develop a sweet pumpkin to intermediate materials for various processed foods and dried food having high quality. Factorial experiment design with three variables having three levels was adapted and response surface methodology was used to determine optimum conditions for osmotic dehydration of sweet pumpkin. The moisture content, weight reduction, moisture loss and solid gain after osmotic dehydration increased according to increasement of immersion temperature, concentration and time. The effect of concentration was more significant than that of temperature and time at given conditions. Sugar concentration and vitamin C content increased in accordance with increasement of immersion temperature, concentration and time during osmotic dehydration. Hardness was increased by increasing immersion time. The regression models showed very significant values and high correlation coefficients (R2) above 0.91, excepting hardness. The optimum condition for osmotic dehydration was 23$^{\circ}C$, 52$^{\circ}C$Brix and 80 min at the constricted conditions such as 60∼70% moisture content, above 3 mg/100 g vitamin C and more than 10 kg/$\textrm{cm}^2$ hardness.

Preparation of Anhydrous Magnesium Chloride for a Fused Salt Electrolysis of Magnesium (마그네슘 용융염전해(溶融鹽電解)를 위한 무수(無水)염화마그네슘 제조(製造))

  • Eom, Hyoung-Choon;Park, Hyung-Kyu;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.16 no.1 s.75
    • /
    • pp.37-43
    • /
    • 2007
  • It was studied to prepare anhydrous magnesium chloride which could used as the raw material of a fused salt electrolysis of magnesium by dehydration of magnesium chloride hydrate. The dehydration was carried out in a tube furnace at $350{\sim}580^{\circ}C$. It was confirmed that magnesium chloride hydrate was oxdized to magnesia through the dehydration in ambient atmosphere, but anhydrous magnesium chloride could be obtained in hydrogen chloride gas atmosphere. And the crystallity of the product increased with increasing temperature and time of dehydration. All of the un-reacted hydrogen chloride gases which were generated during the dehydration in hydrogen chloride gas atmosphere could be recovered as hydrochloric solution, and it could be reused for chlorination of magnesia to prepare magnesium chloride hydrate.

Studies on the Shellfish Processing -3. The Pigment Retention and the Water Absorbing Capacity of Dehydrated Mashed Surf Clam Meat Flakes during Dehydration and Storage- (패류 가공에 관한 연구 -3. 개량조개 박편건제품의 제조 및 저장중의 색소 잔존율과 흡수율에 대하여-)

  • Lee, Eung-Ho;Han, Bong-Ho;Hur, Jong-Wha
    • Korean Journal of Food Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.48-51
    • /
    • 1971
  • The raw surf clam meat was pretreated with BHA, EDTA or $NaHSO_3$. The pretreated meat was chopped with chopper, and spread the chopped meat on nylon net, and then dehydrated with cabinet type hot air dryer. In the surf clam meat flake process, the pretreating and the copping steps prior to final dehydration improved the pigment retention and texture of the products. The chopping steps prior to dehydration reduced the dehydration time of surf clam meat. The BHA treatment prior to dehydration of mashed surf clam meat had an outstanding effect on the pigment retention during a process of dehydration and storage. The surf dam meat flakes reabsorbed water more rapidly about two times than the dehydrated natural surf clam meat products. The surf clam meat flakes stored for three months in the dark place showed less pigment loss than the exposed ones, and the former reabsorbed water more rapidly than the latter.

  • PDF

Photosynthetic Responses to Dehydration in Green Pepper(Capsicum annuum L.)Leaves

  • Lee, Hae-Yeon;Jun, Sung-Soo;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • v.5 no.4
    • /
    • pp.169-174
    • /
    • 1998
  • Photosynthetic responses to dehydration were examined by the simulataneous measurement of O2 evolution and chlorophyll (Chl) fluorescence in green pepper leaves. Dehydration was induced by immersing the plant roots directly in the Hoagland solution containing varying concentration (2-30%) of polyethylene glycol(PEG-6000) . Water potential of the leaf was decreased time-and concentation -dependently by PEG-treatment. The decrease in water potential of leaf was correlated with the decrease in both the maximal photosynthesis (Pmax) and quantum yield of O2 evolution, but Pmax dropped more rapidly than quantum yield at all water deficit conditions tested. However, Chl fluorescence parameters were not affected much. Dehydration did not change the initial fluorescence (Fo) and maximum photochemical efficiency(Fv/Fm) of photosystem(PS) II. Both the photochemical quenching (qP) and non-photochemical quenching(NPQ) were not changed by dehydration under low PFR(50 $\mu$mols m-2s-1 ). In contrast, under high PFR(270$\mu$mols m-2s-1)qP was slightly decreased while NPQ was greatly increased. The fast induction kinetics of Chl fluroecence showed no change in Chl fluorescence pattern by dehydration at high PFR (640 $\mu$mols m-2s-1 ), but exhibited a significant drop in peak level(Fp)at low PRFR (70$\mu$mols m-2s-1 ). PS I oxidation and reduction kinetics revealed normal reduction but delayed oxidation to P-700+, suggesting no lesionin electron flow from PSII to PSI , but impaired electron transport to NADP+,These results suggest that water stress caused by PEG-treatment results in the reduction of photosynthesis, promarily due to the reducted electron trasport from PSI to NADP+ or hampered subsequent steps involving Calvin Cycle.

  • PDF

Kinetics of Drying Shiitake Mushroom, Lentinus edodes sanryun No. 1 (표고버섯의 열풍건조속도론(熱風乾燥速度論)에 관한 연구(硏究))

  • Cho, Duk-Bong;Kim, Dong-Pil;Choi, Choon-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.10 no.1
    • /
    • pp.53-60
    • /
    • 1981
  • Dehydration phenomena has been studied for the shiitake mushroom Lentinus edodes sanryun No.1, through which examine the effect of temperature and air velocity and derivation of its kinetics. Temperature effect for the dehydration rate constant were examined under the constant air velocity (1.5m/sec) with the variation of temperature from $40^{\circ}C$ to $55^{\circ}C$. Water content were reduced exponentially with the course of time and calculated dehydration rate constant values varies with temperature with an Arrhenius-type relationship, which had been expected in the chemical reaction kinetics. Influence of air velocity for the dehydration rate constant under the constant temperature $(45^{\circ}C)$ showed interesting results. For the range 1.0m/sec to 2.0m/sec, dehydration rate constant values are increased with the air velocity, but for the 2.0 to 3.1m/sec, dehydration rate constant values are decreased which were caused by case hardening. One of the selected conditions in the optimal dehydration range, temperature $50^{\circ}C$, air velocity 2m/see, and its measured humidity 38-41%, mathematical model of dehydration curve and dehydration rate equations were developed and the resulting kinetic models were X=6.94 $e^{-0.345t}$ and dx/dt = -2.39 $e^{-0.345t}$

  • PDF

A Study on Heat Storage System Using Calcined Dolomite - Numerical Analysis of Heat Transfer in Calcined Dolomite Dehydration Packed Bed - (소성Dolomite 수화물계의 축열시스템에 관한 연구 - 소성Dolomite 탈수반응층의 전열해석 -)

  • Park, Young-Hae;Kim, Jong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.29-38
    • /
    • 2003
  • To develope chemical heat pump using available energy sources, solar heat and other kinds of waste thermal energy, we have studied the material and heat transfer rate in the cylindrical bed reactor packed with Calcined Dolomite. Our results from the studies are as follows ; 1 The time needed to complete dehydration reaction at the wall side of the cylindrical reactor(r/rL=0.5) was shorter than that of the center(r/rL=0.0) as much as 12%. 2. Two dimensional (radial and circumferential) partial differential equations, concerning heat and mass transfer rate in the packed bed of calcined Dolomite, are solved numerically to describe the characteristics of the reaction in the cylindrical reactor. The solution reads rate of reaction in the packed bed reactor depends on the temperature and concentration of reactants. These results read the supplied heat transfers from the wall side of the cylinder to the center, dehydration reaction begins at the inner side of the wall of the cylindrical reactor and the dehydration reaction proceeds from the wall side to center of cylinder.

Cryopreservation of Hevea brasiliensis zygotic embryos by vitrification and encapsulation-dehydration

  • Nakkanong, Korakot;Nualsri, Charassri
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.333-339
    • /
    • 2018
  • The mature zygotic embryos of the Hevea brasiliensis were cryopreserved through the use of the vitrification and encapsulation/dehydration techniques. In all the experiments, the zygotic embryos were pre-cultured for three days in the MS medium supplemented with 0.3 M sucrose before they were used for the cryopreservation technique. In the vitrification procedure, the effect of the plant vitrification solutions (PVS2 and PVS3) and exposure time were studied. The highest survival rate (88.87%) and regrowth (66.33%) were achieved when the precultured zygotic embryos were incubated in a loading solution for 20 minutes at $0^{\circ}C$. They were subsequently exposed to PVS2 for 120 minutes at $0^{\circ}C$ and plunged directly into liquid nitrogen. Cryopreservation by the encapsulation-dehydration method was successfully done by leaving the encapsulated zygotic embryos in a laminar flow for 4 hours prior to plunging into a LN. The survival rate and regrowth of the encapsulated zygotic embryos were 37.50% and 27.98%, respectively. The cryopreserved zygotic embryos were able to develop into whole plants.

Study on the Improvement of Efficiency in Dehydration Process of LNG Liquefaction Plant Using Molecular Sieve (분자체를 이용한 LNG 액화 플랜트 탈수 공정의 효율성 향상에 관한 연구)

  • JONGHWA PARK;DONSANG YU;DAEMYEONG CHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.105-113
    • /
    • 2024
  • The natural gas dehydration process plays a central role in liquefying LNG. This study proposes two natural gas dehydration process systems applicable to liquefied natural gas (LNG) liquefaction plants, and compares and analyzes energy optimization measures through simulation. The fuel gas from feed stream (FFF) case, which requires additional equipment for gas circulation, disadvantages are design capacity and increased energy. On the other hand, the end flash gas (EFG) case has advantages such as low initial investment costs and no need for compressors, but has downsides such as increased power energy and the use of gas with different components. According to the process simulation results, the required energy is 33.22 MW for the FFF case and 32.86 MW for the EFG case, confirming 1.1% energy savings per unit time in the EFG case. Therefore, in terms of design pressure, capacity, device configuration, and required energy, the EFG case is relatively advantageous. However, further research is needed on the impact of changes in the composition of regenerated gas on the liquefaction process and the fuel gas system.

Optimization for the Process of Osmotic Dehydration for the Manufacturing of Dried Kiwifruit (건조키위 제조를 위한 삼투건조공정의 최적화)

  • Hong, Joo-Hun;Youn, Kwang-Seob;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.348-355
    • /
    • 1998
  • The developments of various processed foods and the high quality dried fruits, in particular, are urgently needed for the enhancement of fruit consumption and their competitive values. Therefore, in this study, three variables by three level factorial design and response surface methodology were used to determine optimum conditions for osmotic dehydration of kiwifruit. The relationships of moisture losses, solid gains, weight reductions, sugar contents, titratable acidities and vitamin C contents depending on changes with temperature, sugar concentration and immersion time were investigated. The moisture loss, solid gain, weight reduction and reduction of moisture content after osmotic dehydration were increased as temperature, sugar concentration and immersion time increased. The effect of concentration was more significant than those of temperature and time on mass transfer. Sugar content was increased by increasing sugar concentration, temperature, immersion time during osmotic dehydration. Titratable acidity and vitamin C content were increased by decreasing temperature, immersion time and increasing concentration during osmotic dehydration. The regression models showed a significant lack of fit (P>0.05) and were highly significant with satisfying values of $R^2$. At the given conditions such as $66{\sim}69%$ moisture content, above $24^{\circ}Brix$ sugar content and more than 23 mg% vitamin C, the optimum condition for osmotic dehydration was $37^{\circ}C,\;55^{\circ}Brix$ and 1.5 hour.

  • PDF