• Title/Summary/Keyword: dehumidification membrane

Search Result 17, Processing Time 0.024 seconds

Preparation and characteristics of inorganic membrane for air dehumidification (공기 제습용 무기막의 제조 및 특성)

  • Kim, Jeong-Eun;Kim, Byoung-Moon;Song, Kun-Ho;Chang, Wha-lk;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.157-162
    • /
    • 2006
  • Recently, the humidity adjustment of indoor air is of great importance in air conditioning system as a applied, in buildings, vehicles, and containers for storage and transport of perishable products. Membrane dehumidification or air is potentially attractive because it offers low capital and operating costs, along with low energy consumption. And membrane dehumidification process attracted the attention of the public instead of the other dehumidification processes, such as adsorption, absorption, and refrigeration cycles and so on. In this study, the prepared hydrophilic inorganic membrane-based dehumidifiers(membrane air dehumidification) examined the performance of dehumidification. The surface-modified inorganic membrane prepared in this study showed high dehumidification efficiency(over 80%). The membrane might be very useful for dehumidification industries.

  • PDF

An Experimental Study on the Optimization of Performance Parameter for Membrane Based Dehumidification and Air Conditioning System (분리막 제습공조 시스템의 성능변수 최적화를 위한 실험적 연구)

  • Jang, Jeachul;Kang, Eun-Chul;Jeong, Siyoung;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.75-80
    • /
    • 2016
  • There are three types of dehumidification systems : refrigeration dehumidification method, desiccant dehumidification method and hybrid dehumidification method. The first method involves removing moisture by condensation below the dew point, the second method involves absorption by a desiccant material and the last is an integration method. However, the refrigeration dehumidification system consumes too much power and controlling the humidity ratio is difficult. The desiccant dehumidification system uses less power but it has problems of environmental pollution. The hybrid dehumidification system has the disadvantage of a high initial cost. On the other hand, the energy consumption of the membrane based dehumidification system is lower than for the refrigeration dehumidification system. Also, it is an environmentally friendly technology. In this study, the performance parameters are evaluated for the dehumidification system using a hollow fiber membrane. Available area, duct side dry-bulb temperature, sweep gas flux (flow rate) and LMPD (Log Mean Pressure Difference) were used as the performance parameters.

Application and Development of Dehumidication Systems - Focusing on Membrane Dryer (제습시스템의 응용과 발전 - Membrane Dryer를 중심으로)

  • 남상용;임지원;황해영;하성용
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.1-17
    • /
    • 2004
  • Dehumidification systems have been developed for the various applications, especially for the production of dry compressed air. Compressed air producing system attach $\varepsilon$ d with dehumidification unit have advantages such as high reliability, low error ratio, comfortable working conditions, etc. Conventional dehumidification systems have several economical drawbacks like high electric cost, high cost of adsorbent and it is not environmentally friendly system because freezing agent like a Freon has been used. Membrane dryer is emerging system which have economical advantages and environmental merits.

A Study on Dehumidification Characteristics of Housing with Shape for Pneumatic System (공압시스템 제습용 중공사막 모듈의 하우징 형태에 따른 제습효율 특성 연구)

  • Jeong, Eun-A;Lee, Kee-Yoon;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.66-71
    • /
    • 2019
  • In this study, flow analysis and dehumidification experiments were performed on hollow fiber membrane module to confirm the dehumidification characteristics for its different configurations. The CFD for the three different models was conducted using $30^{\circ}C$ temperature and 30%RH inlet humidity for quantitative analysis. Each model has different shape parameters i.e. the number of baffles. Comparison between flow analysis results and dehumidification experiment results revealed a percentage error of about 5%. The difference in relative humidity between the inlet and outlet for each model was calculated using flow analysis data. It was established that the difference in relative humidity of the inlet and outlet for the refined model with three baffles was highest among the three modeled modules of hollow fiber membrane module, i.e. around 9%.

A Study on Dehumidification Characteristics of Hollow Fiber Membrane Module for Pneumatic Power Unit Using Fluid-Solid Interaction Analysis (유동-구조 연성해석을 이용한 공압용 파워 유닛에 사용되는 중공사막 모듈에 대한 제습특성 연구)

  • Jeong, Eun-A;Khan, Haroon Ahmad;Lee, Kee-Yoon;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.65-73
    • /
    • 2019
  • In this study, flow analysis and fluid-solid interaction analysis were conducted on a hollow fiber membrane module used for analysis of dehumidification characteristics. To ensure the reliability of the flow analysis results, the dehumidification experiment was performed under the temperature of 30℃ and relative humidity of 30% RH. The results of the dehumidification experiments were compared with the flow analysis results. The results of dehumidification experiments and flow analysis had a difference of approximately 5%. A 1-Way fluid-solid interaction analysis with various materials was conducted. From the results, it was found that the baffle with the largest shape deformation (polyethylene material) was subjected to 2-way fluid-solid interaction. The analysis of fluid flow and dehumidification characteristics were analyzed according to the shape deformation of the baffle.

Prediction of Latent Heat Load Reduction Effect of the Dehumidifying Air-Conditioning System with Membrane (분리막 제습공조시스템의 잠열부하 저감효과 예측)

  • Jung, Yong-Ho;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The summer climate is very hot and humid in Korea. The humidity is an important factor in determining thermal comfort. Recently, the research for dehumidification device development has been attempted to save energy that is required for the operation of the current dehumidifiers on the market. Existing dehumidification systems have disadvantages such as wasting energy to drive a compressor. Meanwhile, dehumidification systems with membranes can dehumidify humid air without increasing the dry bulb temperature so it doesn't have to consume cooling energy. In this paper, the cooling energy savings was studied when a dehumidification system was applied in a model building instead of a chiller. The sensible heat load was almost the same result, but the latent heat load was decreased by 38.9% and the total heat load was decreased by 8.5%. As a result, electric energy used to drive the compressor in a chiller was saved by applying a membrane air-conditioning system instead.

A Study on Shape Improvement of Dehumidifier for Pneumatic System using Computational Fluid Dynamics (전산유체역학을 이용한 공압시스템용 제습장치의 형상 개선에 관한 연구)

  • Jeong, Eun-A;Yun, So-Nam;Lee, Kee-Yoon
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.51-58
    • /
    • 2019
  • In this study, flow analysis and dehumidification experiment were conducted on hollow fiber membrane module to determine the dehumidification characteristics of its various configurations. A quantitative analysis of the CFD for four different models with a temperature of $30^{\circ}C$ and 30%RH inlet humidity was conducted. Each model has different shape parameters i.e. the number of hollow fiber membranes and the presence or absence of baffles. After comparison between the flow analysis results and dehumidification experiment results, the percentage error was found to be approximately 2%. The moisture removal rate for each model was calculated using flow analysis data. It was found that the moisture removal rate of refined model with three baffles and eight hollow fiber membranes was highest among the four modeled modules of hollow fiber membrane one, i.e. about 60%.

A Study on Air Flow Analysis for the Internal Space of the Dehumidifying Air-Conditioning System with A Membrane (분리막 제습공조시스템의 내부 유동 해석에 관한 연구)

  • Jung, Yong-Ho;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.12
    • /
    • pp.620-625
    • /
    • 2015
  • The summer climate is very hot and humid in Korea. Humidity is an important factor in determining thermal comfort. Recently, research on dehumidification device development has been attempted to save the energy required for operating the dehumidifier. Existing dehumidification systems have disadvantages such as wasting energy to drive the compressor. Meanwhile, dehumidification systems with membranes can dehumidify humid air without increasing the dry bulb temperature. Therefore. they don't have to consume cooling energy. In this paper, the installation conditions for a membrane system were analyzed to improve the shape and optimum performance of the system. The results showed that the distance between elements was the critical system design factor, and that a distance of 20 mm was the optimal condition for the pressure drop and flow characteristics of the internal air flow.

LCC Analysis of Residential Dehumidifying Air Conditioning System using Thin Separation Membrane (분리막을 이용한 주거용 제습공조시스템의 LCC 분석)

  • Jung, Yong-Ho;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.1
    • /
    • pp.10-16
    • /
    • 2018
  • The climate of summer in Korea is quite hot and humid. Many studies have been carried out to reduce the energy required for operating a dehumidifier. The dehumidifier is mainly connected to the cooling system since it operates in the summer. Conventional dehumidification methods often require additional cooling and energy for dehumidification. In this study, a system for increasing the efficiency by applying a membrane was analyzed. Its energy saving effect was analyzed when it was applied to residential buildings. Economic efficiency was also evaluated. As a result of this study, 9.0% energy savings were achieved for residential buildings. The investment recovery period was 28.9 years. Such long investment recovery period was because the initial investment cost was excessive and annual energy saving only appeared in the summer.