• Title/Summary/Keyword: degree-of-freedom (DOF)

Search Result 348, Processing Time 0.024 seconds

A new method for optimal selection of sensor location on a high-rise building using simplified finite element model

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.671-684
    • /
    • 2011
  • Deciding on an optimal sensor placement (OSP) is a common problem encountered in many engineering applications and is also a critical issue in the construction and implementation of an effective structural health monitoring (SHM) system. The present study focuses with techniques for selecting optimal sensor locations in a sensor network designed to monitor the health condition of Dalian World Trade Building which is the tallest in the northeast of China. Since the number of degree-of-freedom (DOF) of the building structure is too large, multi-modes should be selected to describe the dynamic behavior of a structural system with sufficient accuracy to allow its health state to be determined effectively. However, it's difficult to accurately distinguish the translational and rotational modes for the flexible structures with closely spaced modes by the modal participation mass ratios. In this paper, a new method of the OSP that computing the mode shape matrix in the weak axis of structure by the simplified multi-DOF system was presented based on the equivalent rigidity parameter identification method. The initial sensor assignment was obtained by the QR-factorization of the structural mode shape matrix. Taking the maximum off-diagonal element of the modal assurance criterion (MAC) matrix as a target function, one more sensor was added each time until the maximum off-diagonal element of the MAC reaches the threshold. Considering the economic factors, the final plan of sensor placement was determined. The numerical example demonstrated the feasibility and effectiveness of the proposed scheme.

Sensory Evaluation of Friction and Viscosity Rendering with a Wearable 4 Degrees of Freedom Force Feedback Device Composed of Pneumatic Artificial Muscles and Magnetorheological Fluid Clutches

  • Okui, Manabu;Tanaka, Toshinari;Onozuka, Yuki;Nakamura, Taro
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.77-83
    • /
    • 2021
  • With the progress in virtual reality technology, various virtual objects can be displayed using head-mounted displays (HMD). However, force feedback sensations such as pushing against a virtual object are not possible with an HMD only. Focusing on force feedback, desktop-type devices are generally used, but the user cannot move in a virtual space because such devices are fixed on a desk. With a wearable force feedback device, users can move around while experiencing force feedback. Therefore, the authors have developed a wearable force feedback device using a magnetorheological fluid clutch and pneumatic rubber artificial muscle, aiming at presenting the elasticity, friction, and viscosity of an object. To date, we have developed a wearable four-degree-of-freedom (4-DOF) force feedback device and have quantitatively evaluated that it can present commanded elastic, frictional, and viscous forces to the end effector. However, sensory evaluation with a human has not been performed. In this paper, therefore, we conduct a sensory evaluation of the proposed method. In the experiment, frictional and viscous forces are rendered in a virtual space using a 4-DOF force feedback device. Subjects are asked to answer questions on a 1- to 7-point scale, from 1 (not at all) to 4 (neither) to 7 (strongly). The Wilcoxon signed rank test was used for all data, and answer 4 (neither) was used as compared standard data. The experimental results confirmed that the user could feel the presence or absence of viscous and frictional forces. However, the magnitude of those forces was not sensed correctly.

Assessment of a dual isolation system with base and vertical isolation of the upper portion

  • Sasan Babaei;Panam Zarfam;Abdolreza Sarvghad Moghadam;Seyed Mehdi Zahrai
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.263-271
    • /
    • 2023
  • Base isolation is a widely used technique for the seismic control of structures as it reduces the structural seismic demand. However, displacement of the isolation layer is not economically feasible in congested urban areas. To resolve the issue, an innovative system is proposed here to isolate both horizontally at the base and vertically in the upper portion of the structure. A simplified linear three degree-of-freedom (3DOF) model of the system that considers the mass and stiffness ratios of the substructure has been introduced and analyzed in MATLAB by spectrum analysis. The 3DOF model results revealed that, when the period of the soft substructure reaches 2.5 times that of the stiff substructure, the isolation and the lower substructure responses decrease by 65% and 51%, respectively. Time-history analysis of a MDOF system at three frequency ratios under a wide range of ground motions indicated that, at the expense of accepting a certain large drift by the soft substructure in the upper portion of the structure, base isolation displacement can be decreased by 10%.

A Study of Kinematic Selection and Design of Manipulator Aimed to Specified Task (작업지향형 매니퓰레이터 기구설계기법에 관한 연구)

  • Lee, Hee-Don;Yu, Seung-Nam;Ko, Kwang-Jin;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.939-944
    • /
    • 2007
  • Generally, development of a robot capable of fast movements or high payloads is progressed by the analysis of dynamic characteristics, DOF positioning, actuator selection, structure of links, and so on. This paper highlights the design of a robot manipulator handled by a human for man-machine cooperation. The requirements of the proposed system include its having multi-DOF(Degree of Freedom)and the capacity for a high payload in the condition of its maximum reach. The primary investigation factors are motion range, performance within the motion area, and reliabilityduring the handling of heavy materials. Traditionally, the mechanical design of robots has been viewed as a problem of packaging motors and electronics into a reasonable structure. This process usually transpires with heavy reliance of designerexperience. Not surprisingly, the traditional design process contains no formally defined rules for achieving desirable results, as there is little opportunity for quantitative feedback during the formative stages. This work primarily focuses on the selection of proper joint types and link lengths, considering a specific task type and motion requirements of the heavy material handling.

  • PDF

Temperature Control of a CSTR using Fuzzy Gain Scheduling (퍼지 게인 스케쥴링을 이용한 CSTR의 온도 제어)

  • Kim, Jong-Hwa;Ko, Kang-Young;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.839-845
    • /
    • 2013
  • A CSTR (Continuous Stirred Tank Reactor) is a highly nonlinear process with varying parameters during operation. Therefore, tuning of the controller and determining the transition policy of controller parameters are required to guarantee the best performance of the CSTR for overall operating regions. In this paper, a methodology employing the 2DOF (Two-Degree-of-Freedom) PID controller, the anti-windup technique and a fuzzy gain scheduler is presented for the temperature control of the CSTR. First, both a local model and an EA (Evolutionary Algorithm) are used to tune the optimal controller parameters at each operating region by minimizing the IAE (Integral of Absolute Error). Then, a set of controller parameters are expressed as functions of the gain scheduling variable. Those functions are implemented using a set of "if-then" fuzzy rules, which is of Sugeno's form. Simulation works for reference tracking, disturbance rejecting and noise rejecting performances show the feasibility of using the proposed method.

A Research on Completeness Assessment of Blocks using DOF Restriction (자유도 제약을 이용한 블록의 완성도 평가 연구)

  • Kim, Chan Suk;Shin, Jong Gye;Noh, Jack You
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.356-361
    • /
    • 2014
  • Accurate block shape assessment is critical for ship manufacturing and a careful assessment of the shape of a fabricated block against the design shape is a core issue. However, in current fabrication practice, the shape of each block is evaluated manually using rigid body transformation. This manual evaluation process entirely depends on workers' experiences and knowledge and makes automation of block shape assessment difficult. In this paper we propose a computation method on the registration for shape assessment of a block during the fabrication process and for evaluation of its completion against the design shape. A conversion on matching method by adding DOF(degree of freedom) restriction is required to reach the goals. We test our method using a real block quality assessment data to demonstrate its applicability to real ship manufacturing process.

A Study on the Control System of Myoelectric Hand Prosthesis (근전의수의 제어시스템에 관한 연구)

  • Choi, Gi-Won;Chu, Jun-Uk;Choe, Gyu-Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.214-221
    • /
    • 2007
  • This paper presents a myoelectric hand prosthesis(MHP) with two degree of freedom(2-DOF), which consists of a mechanical hand, a surface myoelectric sensor(SMES) for measuring myoelectric signal, a control system and a charging battery. The actuation for the 2-DOF hand functions such as grasping and wrist rotation was performed by two DC-motors, and controlled by myoelectric signal measured from the residual forearm muscle. The grip force of the MHP was automatically changed by a mechanical automatic speed reducer mounted on the hand. The skin interface of SMES was composed of the electrodes using the SUS440 metal in order to endure a wet condition due to the sweat. The sensor was embedded with a amplifier and a filter circuit for rejecting the offset voltage caused by power line noises. The control system was composed of the grip force sensor, the slip sensor, and the two controllers. The two controllers were made of a RISC-type microprocessor, and its software was executed on a real-time kernel. The control system used Force Sensing Resistors, FSR, as slip pick-ups at the fingertip of a thumb and the grip force information was obtained from a strain-gauge on the lever of the MHP. The experimental results were showed that the proposed control system is feasible for the MHP.

Optimal Control Design for Automatic Ship Berthing by Using Bow and Stern Thrusters

  • Bui, Van Phuoc;Jeong, Jeong-Soon;Kim, Young-Bok;Kim, Dong-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.10-17
    • /
    • 2010
  • Conventionally, because it is difficult to control a ship in shallow water and because attempting to do so creates unwanted environmental effects, maneuvering ships in the harbor area for berthing is usually done with the assistance of tugboats. In this paper, we propose a new method for berthing ships automatically by using bow and stern thrusters. Specifically, a steering motion model of a ship is considered, and parameters in the equation are evaluated by the system identification technique. An optimal controller based on observations was designed from the linearization of the non-linear ship motion in the horizontal plane. It is used to reduce the uncertainty about the ship's dynamics and reduce measurement requirements. The performance of the controller was also analyzed for its robustness relative to avoiding disturbing the environment due to winds, currents, and wave-drift forces. Experiments were conducted to estimate the potential for identifying result and the design of the controller. Specifically, in this paper, the system modeling and tracking control approach are discussed based on a two-degree-of-freedom (2DOF) servo-system design.

An Enhanced Power Sharing Strategy for Islanded Microgrids Considering Impedance Matching for Both Real and Reactive Power

  • Lin, Liaoyuan;Guo, Qian;Bai, Zhihong;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.282-293
    • /
    • 2017
  • There exists a strong coupling between real and reactive power owing to the complex impedances in droop based islanded microgrids (MGs). The existing virtual impedance methods consider improvements of the impedance matching for sharing of the voltage controlled power (VCP) (reactive power for Q-V droop, and real power for P-V droop), which yields a 1-DOF (degree of freedom) tunable virtual impedance. However, a weak impedance matching for sharing of the frequency controlled power (FCP) (real power for $P-{\omega}$ droop, and reactive power for $Q-{\omega}$ droop) may result in FCP overshoots and even oscillations during load transients. This in turn results in VCP oscillations due to the strong coupling. In this paper, a 2-DOF tunable adaptive virtual impedance method considering impedance matching for both real and reactive power (IM-PQ) is proposed to improve the power sharing performance of MGs. The dynamic response is promoted by suppressing the coupled power oscillations and power overshoots while realizing accurate power sharing. In addition, the proposed power sharing controller has a better parametric adaptability. The stability and dynamic performances are analyzed with a small-signal state-space model. Simulation and experimental results are presented to investigate the validity of the proposed scheme.

An Analysis on the Effect of the PID Controller Design Due to Performance Index (평가지표에 따른 PID 제어기 설계 영향 분석)

  • Lee, Keum-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.52-58
    • /
    • 2005
  • Among various modern control theories, PID control has been well used for several decades. PID algorithms need some tuning methods which are used for selecting PID parameters. But in some cases various kinds of performance indices are used instead of well-known tuning rules, and so variable type of performance index must be tested so that controllers, output characteristics and disturbance rejection property meet some specifications. In this paper, linear conbinational type of performance index using error signal, time, control input and robustness is used to the PID control of air conditioning system. By use of the 2 DOF PID parmeters minimizing perfromacne index controllers, output characteristics and robustness properties are analyzed. Simulations are done by use of MATLAB with Simulink.