• Title/Summary/Keyword: degree of weathering

Search Result 160, Processing Time 0.022 seconds

The Stability Analysis of Near Parallel Tunnels Pillar at Multi-layered Soil with Shallow Depth by Numerical Analysis (수치해석에 의한 저토피 다층지반에서 근접 병설터널 필라의 안정성 분석)

  • Lim, Hyungmin;Son, Kwangrok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • In Korea, in general, separation distance between existing parallel tunnels was set at two to five times as distant as the diameter of the tunnels according to ground conditions. Recently, however, actual applicability of closely spaced parallel tunnels whose distance between tunnel centers was shorter than the diameter has increased due to environmental damages resulting from massive cutting, restriction in purchase of required land, and maintenance of linear continuity. In particular, when the pillar width of tunnel decreases, the safety of pillars affects behaviors of the tunnel and therefore the need for diverse relevant studies has emerged. However, research so far has been largely confined to analysis of behavior characteristics of pillars, or parameters affecting design, and actually applicable and quantitative data have not been presented. Accordingly, in order to present a stability evaluation method which may maximally reflect construction conditions of spots, this study reflected topographical and stratigraphic characteristics of the portal part with the highest closeness between the tunnels, simulated multi-layer conditions with rock mass and complete weathering, and assessed the degree of effect the stability of pillars had on the entire tunnels through numerical analysis according to changes in pillar width by ground strength. This study also presented composite analysis result on ground surface settlement rates, interference volume rates, and average strength to stress and a formula, which may be applicable to actual work, to evaluate safety rates of closely spaced parallel tunnel pillars and minimum pillar width by ground strength based on failure criteria by Hoek-Brown (1980).

Engineering Characteristics of Mudeungsan Tuff and Ipseok-dae Columnar Joints (무등산응회암과 입석대 주상절리대의 공학적 특성)

  • Noh, Jeongdu;Jang, Heewon;Lim, Chaehun;Hwang, Namhyun;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.161-173
    • /
    • 2020
  • This study is to examine the engineering characteristics of colunmar joints in Mudeugsan National Park, a global geopark. For these purposes, physical and mechanical properties of Mudeungsan Tuff, evaluation for the weathering degree of columnar joints, and crack behavior monitoring in columnar joints were conducted. The physical properties of Mudeungsan tuff were 1.02% for the average porosity, 0.38% for the average absorption, 2.69 g/㎤ for the average specific gravity, and 4,948 m/s for the average elastic wave velocity. Its mechanical properties were 337 MPa for the average uniaxial compressive strength, 68 GPa for the average elastic modulus, 0.29 for the average Poisson's ratio, 41.3 MPa for the average cohesion strength, and 62.8° for the average friction angle. the average rebound Q-value of the silver Schmidt hammer for the three columnar joint blocks at the Ipseok-dae was shown as 49.3. when this value is converted into uniaxial compressive strength, it becomes 70.5 MPa, which is about 21% of the uniaxial compression strength of Mudeungsan tuff. In addition, according to the results of crack monitoring measurements for the three columnar joint blocks at the Ipseok-dae, the crack behavior is less than 1 mm, so it is believed that its behavior in Ipseak-dae columnar joints has hardly occured to date.

Material Characteristics and Clay Source Interpretation of Crucibles in Baekje Kingdom Excavated from the Ssangbukri Site in Buyeo, Korea (부여 쌍북리 유적 출토 백제 도가니의 재료학적 특성과 원료의 산지해석)

  • Kim, Ji-Young;Park, Jin-Young;Park, Dae-Sun;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • The crucibles of Baekje Kingdom from the Ssangbukri Site which were used for glass and metal melting had light brown, grayish blue and grayish brown colored bodies. In thin section, the crucibles contained numerous quartz grains and pottery fragments. The surface was covered with fine grained quartz for thermal resistance. Based on decomposition of mica group minerals and formation of mullite detected by X-ray diffraction analysis, it was inferred that all crucibles have been fired over $1,000^{\circ}C$. It was also found that firing temperature has exceeded $1,100^{\circ}C$ in some crucibles because feldspar was not detected. The maximum temperature was assumed at $1,200^{\circ}C$. The magnetic susceptibility values and geochemical characteristics sorted out the crucibles into two groups that differed from the characteristics of the local soils. This reflected geological setting of the site where the alluvium was formed from two kinds of surrounding rock masses, granite gneiss and biotite granite. However, the local soils had similarities with the crucibles in weathering degree and geochemical behavior of major elements. In consequence, it was considered that the raw clay of the crucibles was supplied from the local area of the site.

A Study on Recovery of Aluminum Oxide from Artificial Marble Waste by Pyrolysis (열분해에 의한 폐인조대리석으로부터 산화알루미늄 회수에 관한 연구)

  • Kim, Bok Roen;Kim, Chang Woo;Seo, Yang Gon;Lee, Young Soon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.567-573
    • /
    • 2012
  • Compared with the natural marble, the artificial marble has the advantages of excellent appearance, high degree of finish, even color, fine pressure and wear resistance, bear erosion and weathering, etc. It can be widely used in kitchen countertops, bath vanity tops, table tops, furniture, reception desks, etc. However, large amounts of artificial marble waste such as scraps or dust have been generated from sawing and polishing processes in artificial marble industry. Waste from artificial marble industry is increasing according to demand magnification of luxurious interior material. Artificial marble wastes can be recycled as aluminum oxide used as raw materials in electronic materials, ceramics production, etc., and methyl methacrylate(MMA) which become a raw material of artificial marble by pulverization, pyrolysis and distillation processes. The characteristics of artificial marble wastes was analyzed by using TGA/DSC and element analysis. Crude aluminum oxide was obtained from artificial marble waste by pulverization and thermal decomposition under nitrogen atmosphere. In this work, Box-Behnken design was used to optimize the pyrolysis process. The characteristics of crude aluminum oxide was evaluated by chromaticity analysis, element analysis, and surface area.

Strength Characteristics of Sedimentary Rock in Daegu-Gyungbuk Area Followed by Saturation and Crack Initiation (대구경북지역 퇴적암의 포화 및 균열 유발에 따른 강도 특성)

  • Park, Sung-Sik;Kim, Seong-Heon;Bae, Do-Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.29-42
    • /
    • 2018
  • Shale and mudstone in Daegu-Gyungbuk area have low strength and resistance to weathering compared to other rocks. Therefore, it is necessary to evaluate their strength depending on the degree of saturation and crack development. In this study, shales and mudstones were collected from several construction sites in Daegu-Gyungbuk area. Their basic material properties such as porosity, SEM, chemical component, and durability were tested. A porosity (absorptivity) of mudstone was 31% (25%), which was 6 (8) times higher than that of shale. Some mudstone was easily disintegrated with water and it consisted of highly-active clay mineral such as smectite type. These rocks were prepared by small cube specimens for unconfined compression test. An unconfined compressive strength of dry rock was compared with saturated one. Microwave oven was operated step by step to stimulate void water within a saturated rock, which resulted into high temperature and micro crack initiation within rocks. A strength of microwaved rocks was compared with operation time and crack initiation. As a result, the average unconfined compressive strength of dry and saturated shale was 62 and 33 MPa, respectively. The strength of mudstone for each condition was 11 and 4 MPa. When a rock became saturated, its strength decreased by 47% and 64% for shale and mudstone at average. In addition to saturation, a rock was in the microwave for 15 secs, its strength decreased into 49% for shale and 52% for mudstone. When a microwave oven operated up to 20 sec, a rock was crushed into several pieces and its temperature was approximately 200 degrees.

Study on Analysis for Factors Inducing the Whangryeong Mountain Landslide (황령산 산사태 원인 분석에 대한 연구)

  • 최정찬;백인성
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.137-150
    • /
    • 2002
  • Recently, plane failure mode occurred frequently along the bedding plane having low angle dip about 20 degree when cutting slopes were constructed in sedimentary rock region of the Gyeongsang Basin. Landslide of the Whangryeong Mountain which was occurred at Busan Metropolitan City in 1999 belongs to the category mentioned above. Reconstruction for cutting slope of the Whangryeong Mountain has finished in 2000 and final grade of reconstructed cutting slope is 1:2.0. To analyze slope failure mode for landslide of the Whangryeong Mountain, various analyses were performed such as in-situ investigation and test, drilling, laboratory test, aerial photograph interpretation, X-ray diffraction analysis, and slope stability analysis using Stereographic Projection and Limit Equilibrium methods. As the result, it is identified that tension cracks had been developed one year before the landslide took place. The tension crack semis to be formed by merging several joint sets. It appears that failure blocks broke down along the sliding planes of different layers. Risk of plane failure is conformed as a result of stability analysis using Stereographic Projection and Limit Equilibrium methods in case that greenish gray tuffaceous shales, regared as sliding planes, are weathered. From now on, a detailed investigation is needed for the thin layers which is sensitive to weathering, and stability analysis for this layer is performed at cut slope construction site having similar geological condition.

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.

Potential Element Retention by Weathered Pulverised Fuel Ash : I. Batch Leaching Experiments (풍화 석탄연소 고형폐기물(Pulverised Fuel Ash)의 중금속 제거가능성 : I. 뱃치 용출실험)

  • Lee, Sanghoon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.251-257
    • /
    • 1995
  • Three PEA (Pulverised Fuel Ash) samples, which were fresh, 17 and some 40 years weathered, were collected from two major British power plants. Batch leaching tests with these samples using distilled water and simulated industrial leachate showed higher amounts of element liberation from fresh ash, including Ca, Na, K, S (as $SO^{2-}_4$, $Cr_{total}$, Cu, Li Ni, Mo and CI and this seems to indicate their surface association and easier dissolution when contact with water. On the contrary Mg, Al, Ba, Si, V, As and Se do not show such readily leachable concentrations and these elements might be more associated with glass fraction in PFA particle rather than surface. Although element concentrations in the weathered ash are much lower than those in the initial leachate from the fresh ash, elements are still detected as resonable concentrations, with rather constant levels and this seems to demonstrate the element release from unstable glass phase of PFA particle. Fe, Ca, $Cr_{total}$, Cu, Ni, Zn and Hg were removed from the synthetic leachate by PFA and this is also confirmed by gain in solid PFA. The order of element retention is Meaford weathered ash > Drax weathered ash > Drax fresh ash in decreasing order and this conforms with the degree of weathering. Namely, the more wethered, the more wethered, the more effective in metal retention from the synthetic leachate.

  • PDF

Analysis for Rainfall Infiltration Using Electrical Resistivity Monitoring Survey (강우 침투 특성 분석을 위한 전기비저항 모니터링 탐사)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Park, Dug-Keun;Yoon, Yeo-Jin;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.41-53
    • /
    • 2012
  • During rainfall period, to identify the characteristics of the infiltration of moisture, electrical resistivity monitering survey was carried out to weathered zone. Four regions of geophysical exploration areas with different rock types, four regions were selected. An area consists of mafic granite and three areas are composed of sedimentary rocks (Sandstone, Shale, Unconsolidated Mudstone). Survey was conducted from June (rainy season) to November (dry season), and during the period the change in resistivity was observed. According to the result of monitoring exploration on Geumjeong and Jinju areas, for the estimation of the standard rainfall, it is necessary to estimate the effects of the antecedent rainfall during the rainy season based on the overall rainfall from June till October and also necessary to consider this for the estimation of the half period. Also, the vertical distribution of the low resistivity anomaly zone does not show that the infiltration of moisture does not occur uniformly from the surface of the ground to the lower ground but shows that it occurs along the relaxed gap of the crack or soil stratum of the weathering zone. In Pohang area, the type of moisture infiltration is different from that of the granite or sedimentary rock. Since, after the rainfall, the rate of infiltration to the lower ground is high and the period of cultivation to the lower bedrock aquifer is short, it has similar effect to that of the antecedent rainfall applied for the estimation of the standard rainfall being presently used. In Danyang, due to the degree of water content of the ground, the duration period of the low resistivity anomaly zone observed in the lower ground of the place where clastic sedimentary rock is distributed is similar to that in Pohang area. The degree of lateral water diffusion at the time of localized heavy rain is the same as that of the sedimentary rock in Jinju. According to the above analysis results, in Danyang area, the period when the antecedent rainfall has its influence is estimated as three weeks or so.

Evaluation of Ecological quality and establishment of ecological restoration guideline in landscape level of Mt. Moodeung National Park (무등산국립공원의 생태적 질 평가 및 복원 가이드라인 수립)

  • Lim, Chi Hong;Park, Yong Su;An, Ji Hong;Jung, Song Hie;Nam, Kyeong Bae;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.296-307
    • /
    • 2016
  • Ecological restoration is an eco-technology, which heals the nature damaged by human activity by imitating organization and function of the integrate nature and thereby provide an inhabitable space for diverse organisms. Such an ecological restoration has to be carried out by applying restoration plan prepared based on the results of diagnostic evaluation discussed in the diversified respects. This study aims to prepare an ecological restoration plan of the damaged forest ecosystem in Mt. Moodeung National Park. To arrive at the goal, first of all, we diagnosed quality of forest landscape established in Mt. Moodeung National Park based on natural (topography, climate, and distribution of vegetation) and artificial (land use, linear landscape element) factors. In addition, we evaluated the integrity of each zone divided by linear landscape element quantitatively based on geometric property and land use intensity. As the result of analysis, topography of Mt. Moodeung National Park tended to be depended on weathering property of parent rock and vegetation zones were divided to three vegetation zones. Based on land use pattern, deciduous broad-leaved forest, evergreen needle-leaved forest, and mixed forest occupied about 90% of Mt. Moodeung National Park. Mean score of forest landscape quality was shown in $69.86{\pm}11.41$. As a result, forest landscape elements in Mt. Moodeung National Park were influenced greatly by human activity and the degree was depended on topographic condition. This study suggested the synthetic restoration plan to improve ecological quality of Mt. Moodeung National Park based on the results of diagnostic evaluation.