• Title/Summary/Keyword: degree of blackness

Search Result 2, Processing Time 0.016 seconds

Multimodal Medical Image Fusion Based on Sugeno's Intuitionistic Fuzzy Sets

  • Tirupal, Talari;Mohan, Bhuma Chandra;Kumar, Samayamantula Srinivas
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.173-180
    • /
    • 2017
  • Multimodal medical image fusion is the process of retrieving valuable information from medical images. The primary goal of medical image fusion is to combine several images obtained from various sources into a distinct image suitable for improved diagnosis. Complexity in medical images is higher, and many soft computing methods are applied by researchers to process them. Intuitionistic fuzzy sets are more appropriate for medical images because the images have many uncertainties. In this paper, a new method, based on Sugeno's intuitionistic fuzzy set (SIFS), is proposed. First, medical images are converted into Sugeno's intuitionistic fuzzy image (SIFI). An exponential intuitionistic fuzzy entropy calculates the optimum values of membership, non-membership, and hesitation degree functions. Then, the two SIFIs are disintegrated into image blocks for calculating the count of blackness and whiteness of the blocks. Finally, the fused image is rebuilt from the recombination of SIFI image blocks. The efficiency of the use of SIFS in multimodal medical image fusion is demonstrated on several pairs of images and the results are compared with existing studies in recent literature.

The Evaluation of the Preparation and Characterization of Inks based on Surface-modified Specialty Carbon Black(SCB) (표면개질 스페셜티 카본블랙의 제조 및 잉크 특성 평가)

  • Park, Dong Jun;Kim, Song Hui;Park, Soo Youl
    • Textile Coloration and Finishing
    • /
    • v.30 no.3
    • /
    • pp.168-179
    • /
    • 2018
  • The modified surface of specialty carbon black(SCB) is one of the main technical factors for producing a uniform color and stable dispersion. In this work, the carboxylation or sulfonation process of SCB was used to improve the dispersive properties of hydrophilic solvents such as 1,6-hexanediol and propylene glycol monomethyl ether acetate(PGMEA). The results showed that the color strength of SCB DC2500G changed little with a range of 0.128~0.941(${\Delta}E$) compared to other SCB DC2500G material. In contrast, in the case of SCB EG410, there was a uniform color value with a range of 0.144~0.252(${\Delta}E$). Also, in our experiments, a modified SCB was confirmed by printing ink material as a melt coating paper. It may be possible that the SCB EG410 material can be advantageous as a gravure ink product. Finally, the modified SCB obtained from this research will have a large impact on the industry as a potential material for toners, paint, rubber, fillers, and other carbon black additives.