• 제목/요약/키워드: degradation pathway

검색결과 434건 처리시간 0.029초

Janus Kinase 2 Inhibitor AG490 Inhibits the STAT3 Signaling Pathway by Suppressing Protein Translation of gp130

  • Seo, In-Ae;Lee, Hyun-Kyoung;Shin, Yoon-Kyung;Lee, Sang-Hwa;Seo, Su-Yeong;Park, Ji-Wook;Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권2호
    • /
    • pp.131-138
    • /
    • 2009
  • The binding of interleukin-6 (IL-6) cytokine family ligands to the gp130 receptor complex activates the Janus kinase (JAK)/ signal transducer and activator of transcription 3 (STAT3) signal transduction pathway, where STA T3 plays an important role in cell survival and tumorigenesis. Constitutive activation of STAT3 has been frequently observed in many cancer tissues, and thus, blocking of the gp130 signaling pathway, at the JAK level, might be a useful therapeutic approach for the suppression of STAT3 activity, as anticancer therapy. AG490 is a tyrphostin tyrosine kinase inhibitor that has been extensively used for inhibiting JAK2 in vitro and in vivo. In this study, we demonstrate a novel mechanism associated with AG490 that inhibits the JAK/STAT3 pathway. AG490 induced downregulation of gp130, a common receptor for the IL-6 cytokine family compounds, but not JAK2 or STAT3, within three hours of exposure. The downregulation of gp130 was not caused by enhanced degradation of gp130 or by inhibition of mRNA transcription. It most likely occurred by translation inhibition of gp130 in association with phosphorylation of the eukaryotic initiation factor-2 a. The inhibition of protein synthesis of gp130 by AG490 led to immediate loss of mature gp130 in cell membranes, due to its short half-life, thereby resulting in reduction in the STAT3 response to IL-6. Taken together, these results suggest that AG490 blocks the STAT3 activation pathway via a novel pathway.

Sodium Salicylate Inhibits Expression of COX-2 Through Suppression of ERK and Subsequent $NF-{\kappa}B$ Activation in Rat Ventricular Cardiomyocytes

  • Kwon, Keun-Sang;Chae, Han-Jung
    • Archives of Pharmacal Research
    • /
    • 제26권7호
    • /
    • pp.545-553
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation, which can be inhibited with sodium salicylate. IL-1$\beta$ and TNF-$\alpha$ can induce extracellular signal-regulated kinase (ERK), IKK, IkB degradation and NF-$\kappa$B activation. Salicylate inhibited the IL-1$\beta$ and TNF-$\alpha$-induced COX-2 expressions, regulated the activation of ERK, IKK and IkB degradation, and the subsequent activation of NF-$\kappa$B, in neonatal rat ventricular cardiomyocytes. The inhibition of the ERK pathway, with a selective inhibitor, PD098059, blocked the expressions of IL-1$\beta$ and TNF-$\alpha$-induced COX-2 and $PGE_2$ release. The antioxidant, N-acetyl-cysteine, also reduced the glutathione or catalase- attenuated COX-2 expressions in IL-1$\beta$ and TNF-$\alpha$-treated cells. This antioxidant also inhibited the activation of ERK and NF-$\kappa$B in neonatal rat cardiomyocytes. In addition, IL-1$\beta$ and TNF-$\alpha$-stimulated the release of reactive oxygen species (ROS) in the cardiomyocytes. However, salicylate had no inhibitory effect on the release of ROS in the DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, I$\kappa$B degradation and NF-$\kappa$B activation, independently of the release of ROS, which suggested that salicylate exerts its anti-inflammatory action through the inhibition of ERK, IKK, IkB and NF-$\kappa$B, and the resultant COX-2 expression pathway in neonatal rat ventricular cardiomyocytes.

Paeoniflorin ameliorates Aβ-stimulated neuroinflammation via regulation of NF-κB signaling pathway and Aβ degradation in C6 glial cells

  • Cho, Eun Ju;Kim, Hyun Young;Lee, Ah Young
    • Nutrition Research and Practice
    • /
    • 제14권6호
    • /
    • pp.593-605
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Alzheimer's disease is common age-related neurodegenerative condition characterized by amyloid beta (Aβ) accumulation that leads cognitive impairment. In the present study, we investigated the protective effect of paeoniflorin (PF) against Aβ-induced neuroinflammation and the underlying mechanism in C6 glial cells. MATERIALS/METHODS: C6 glial cells were treated with PF and Aβ25-35, and cell viability, nitric oxide (NO) production, and pro-inflammatory cytokine release were measured. Furthermore, the mechanism underlying the effect of PF on inflammatory responses and Aβ degradation was determined by Western blot. RESULTS: Aβ25-35 significantly reduced cell viability, but this reduction was prevented by the pretreatment with PF. In addition, PF significantly inhibited Aβ25-35-induced NO production in C6 glial cells. The secretion of interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha was also significantly reduced by PF. Further mechanistic studies indicated that PF suppressed the production of these pro-inflammatory cytokines by regulating the nuclear factor-kappa B (NF-κB) pathway. The protein levels of inducible NO synthase and cyclooxygenase-2 were downregulated and phosphorylation of NF-κB was blocked by PF. However, PF elevated the protein expression of inhibitor kappa B-alpha and those of Aβ degrading enzymes, insulin degrading enzyme and neprilysin. CONCLUSIONS: These findings indicate that PF exerts protective effects against Aβ-mediated neuroinflammation by inhibiting NF-κB signaling, and these effects were associated with the enhanced activity of Aβ degradation enzymes.

Salicylate Regulates Cyclooxygenase-2 Expression through ERK and Subsequent $NF-_kB$ Activation in Osteoblasts

  • Chae, Han-Jung;Lee, Jun-Ki;Byun, Joung-Ouk;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권4호
    • /
    • pp.239-246
    • /
    • 2003
  • The expression of cyclooxygenase-2 (COX-2) is a characteristic response to inflammation and can be inhibited with sodium salicylate. $TNF-{\alpha}$ plus $IFN-{\gamma}$ can induce extracellular signal-regulated kinase (ERK), IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation. The inhibition of the ERK pathway with selective inhibitor, PD098059, blocked cytokine-induced COX-2 expression and $PGE_2$ release. Salicylate treatment inhibited COX-2 expression induced by $TNF-{\alpha}$/$IFN-{\gamma}$ and regulated the activation of ERK, IKK and $I{\kappa}B$ degradation and subsequent NF-${\kappa}B$ activation in MC3T3E1 osteoblasts. Furthermore, antioxidants such as catalase, N-acetyl-cysteine or reduced glutathione attenuated COX-2 expression in combined cytokines-treated cells, and also inhibited the activation of ERK, IKK and NF-${\kappa}B$ in MC3T3E1 osteoblasts. In addition, $TNF-{\alpha}$/$IFN-{\gamma}$ stimulated ROS release in the osteoblasts. However, salicylate had no obvious effect on ROS release in DCFDA assay. The results showed that salicylate inhibited the activation of ERK and IKK, $I{\kappa}B$ degradation and NF-${\kappa}B$ activation independent of ROS release and suggested that salicylate exerts its anti-inflammatory action in part through inhibition of ERK, IKK, $I{\kappa}B$, $NF-{\kappa}B$ and resultant COX-2 expression pathway.

Sequence Characteristics of xylJQK Genes Responsible for Catechol Degradation in Benzoate-Catabolizing Pseudomonas sp. S-47

  • Park, Dong-Woo;Lee, Jun-Hun;Lee, Dong-Hun;Lee, Kyoung;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권5호
    • /
    • pp.700-705
    • /
    • 2003
  • Pseudomonas sp. S-47 is capable of degrading benzoate and 4-chlorobenzoate as well as catechol and 4-chlorocatechol via the meta-cleavage pathway. The three enzymes of 2-oxopenta-4-enoate hydratase (OEH), acetaldehyde dehydrogenase (acylating) (ADA), and 2-oxo-4-hydroxypentonate aldolase (HOA) encoded by xylJQK genes are responsible for the three steps after the meta-cleavage of catechol. The nucleotide sequence of the xylJQK genes located in the chromosomal DNA was cloned and analyzed. GC content of xylJ, xylQ, and xylK was 65% and consisted of 786, 924, and 1,041 nucleotides, respectively. The deduced amino acid sequences of xylJ, xylQ, and xylK genes from Pseudomonas sp. S-47 showed 93%, 99%, and 99% identity, compared with those of nahT, nahH, and nahI in Pseudomonas stutzeri An10. However, there were only about 53% to 85% identity with xylJQK of Pseudomonas putida mt-2, dmpEFG of P. putida CF600, aphEFG of Comamonas testosteroni TA441, and ipbEGF of P. putida RE204. On the other hand, the xylLTEGF genes located upstream of xylJQK in the strain S-47 showed high homology with those of TOL plasmid from Pseudomonas putida mt-2. These findings suggested that the xylLTEGFIJQK of Pseudomonas sp. S-47 responsible for complete degradation of benzoate and then catechol via the meta-pathway were phylogenetically recombinated from the genes of Pseudomonas putida mt-2 and Pseudomonas stutzeri An10.

Globular Adiponectin Exerts a Pro-Inflammatory Effect via IκB/NF-κB Pathway Activation and Anti-Inflammatory Effect by IRAK-1 Downregulation

  • Lee, Kyoung-Hee;Jeong, Jiyeong;Woo, Jisu;Lee, Chang-Hoon;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.762-770
    • /
    • 2018
  • Adiponectin, a hormone produced by adipose tissue, is very abundant in plasma, and its anti- and pro-inflammatory effects are reported. However, the mechanisms of these pro- and anti-inflammatory effects are not fully defined. Herein, we evaluated the dual inflammatory response mechanism of adiponectin in macrophages. Short-term globular adiponectin (gAd) treatment induced $I{\kappa}B{\alpha}$ degradation, $NF-{\kappa}B$ nuclear translocation, and $TNF-{\alpha}$ production in RAW 264.7 cells. Polymyxin B pretreatment did not block gAd-induced $I{\kappa}B{\alpha}$ degradation, and heated gAd was unable to degrade $I{\kappa}B{\alpha}$, suggesting that the effects of gAd were not due to endotoxin contamination. gAd activated IKK and Akt, and inhibition of either IKK or Akt by dominant-negative $IKK{\beta}$ ($DN-IKK{\beta}$) or DN-Akt overexpression blocked gAd-induced $I{\kappa}B{\alpha}$ degradation, suggesting that short-term incubation with gAd mediates inflammatory responses by activating the $I{\kappa}B/NF-{\kappa}B$ and PI3K/Akt pathways. Contrastingly, long-term stimulation with gAd induced, upon subsequent stimulation, tolerance to gAd, lipopolysaccharide, and CpG-oligodeoxynucleotide, which is associated with gAd-induced downregulation of IL-receptor-associated kinase-1 (IRAK-1) due to IRAK-1 transcriptional repression. Conclusively, our findings demonstrate that the pro- and anti-inflammatory responses to gAd in innate immune cells are time-dependent, and mediated by the activation of the $I{\kappa}B/NF-{\kappa}B$ pathway, and IRAK-1 downregulation, respectively.

Cloning and Sequence Analysis of the xyIL Gene Responsible for 4CBA-Dihydrodiol Dehydrogenase from Pseudomonas sp. S-47

  • Park, Dong-Woo;Kim, Youngsoo;Lee, Sang-Mahn;Ka, Jong-Ok;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • 제38권4호
    • /
    • pp.275-280
    • /
    • 2000
  • Pseudomonas sp. S-47 is capable of catabolizing 4-chlorobenzoate (4CBA) as rarbon and energy sources under aerobic conditions via the mesa-cleavage pathway. 4CBA-dioxygenase and 4CBA-dihydrodiol dehydrogenase (4CBA-DD) catalyzed the degradation af 4CBA to produce 4-chlorocatechol in the pathway. In this study, the xylL gene encoding 4CBA-DD was cloned from the chromosomal DNA of Pseudomonas sp. S-47 and its nucleotide sequence was analyzed. The xylL gene was found to be composed of 777 nucleotide pairs and to encode a polypeptide of 28 kDa with 258 amino acid residues. The deduced amino acid sequence of the dehydrogenase (XylL) from strain S-47 exhibited 98% and 60% homologies with these of the corresponding enzymes, Pseudomonas putida mt-2 (XyIL) and Acinetobacter calcoaceticus (BenD), respectively. However, the amino arid sequences show 30% or less homology with those of Pseudomonas putida (BnzE), Pseudomonas putida Fl (TodD), Pseudomonas pseudoalcaligenes KF707 (BphB), and Pseudomonas sp. C18 (NahB). Therefore, the 4CBA-dihydrodiol dehdrogenase of strain S-47 belongs to the group I dehydrogenase involved in the degradation of mono-aryls with a carboxyl group.

  • PDF

제초제(除草劑) Propanil의 용액중(溶液中) 분해산물(分解産物)의 분리(分離) 및 동정(同定) (Isolation and Identification of Degradation products of Herbicide Propanil in Solution)

  • 김장억;신윤교;홍종욱
    • Current Research on Agriculture and Life Sciences
    • /
    • 제5권
    • /
    • pp.27-32
    • /
    • 1987
  • 용액중(溶液中) propanil 분해산물(分解産物)의 분리(分離) 및 동정(同定)을 위해서 2000ppm으로 처리(處理)한 후 2주(週) 간격(間隔)으로 12주(週)까지 일정(一定)한 온도(溫度)로 유지(維持)시키면서 주분해산물(主分解産物)을 조사(調査)한 결과(結果)는 다음과 같다. 추출(抽出)한 혼합물(混合物)로부터 benzene을 전개용매(展開溶媒)로 한 TLC에서 분해산물(分解産物)인 DCA와 TCAB를 Rf치(値) 0.65와 0.94에서 분리(分離)할 수 있었다. GC분석(分析)은 column 온도(溫度) $200^{\circ}C$에서 분리(分離)가 가능(可能)하지만 정량적(定量的) 분석(分析)에서 DCA는 $140^{\circ}C$, TCAB는 $250^{\circ}C$로 달리하여 분해경로(分解經路)를 조사(調査)하였다. IR spectrum에서 $3400cm^{-1}$$800cm^{-1}$의 흡수(吸收) band에 의(依)해 DCA의 작용기(作用基)가 결정(決定)되었다. NMR spectrum에서 $6.7{\delta}$$3.7{\delta}$의 peak는 DCA의proton과 일치(一致)하였다. 이와 같이 용액중(溶液中) 혼합추출물(混合抽出物)로부터propanil의 주분해산물(主分解産物)을 TLC로 분리(分離)하여 GC, IR, NMR로 동정(同定)한결과 propanil은 용액(溶液) 내(內)에서 DCA를 거쳐서 TCAB로 분해(分解)되는 것으로 나타났다.

  • PDF

가시광선하에서 CdS와 CdZnS/ZnO 광촉매를 이용한 로다민 B, 메틸 오렌지 및 메틸렌 블루의 광분해 반응 (Photocatalytic Degradation of Rhodamine B, Methyl Orange and Methylene Blue with CdS and CdZnS/ZnO Catalysts under Visible Light Irradiation)

  • 전현웅;정민교;안병윤;홍민성;성상혁;이근대
    • 청정기술
    • /
    • 제26권4호
    • /
    • pp.311-320
    • /
    • 2020
  • 본 연구에서는 단순 침전법으로 제조한 CdS 및 CdZnS/ZnO 광촉매를 이용하여 가시광선하에서 로다민 B, 메틸 오렌지 및 메틸렌 블루 등에 대한 광분해 반응 연구를 수행하였다. 특히 염료와 광촉매의 물리화학적 성질이 전체 광촉매 반응의 반응 경로에 미치는 영향에 대해 중점을 두고 검토하였다. X선 회절분석법, UV-vis 확산반사 분광법 그리고 X선 광전자 분광분석법 등을 이용하여 제조된 촉매들의 물리화학적 특성을 분석하였다. CdS 및 CdZnS/ZnO 광촉매 모두 자외선뿐만 아니라 가시광선 영역에 있어서도 우수한 광흡수 특성을 나타내었다. 메틸 오렌지의 경우에는 CdS 및 CdZnS/ZnO 각각의 광촉매 상에서 동일한 반응기구를 통해 반응이 진행되는 반면, 로다민 B 및 메틸렌 블루는 각각의 광촉매 상에서 서로 다른 반응 경로를 통해 광분해 반응이 진행되는 것으로 나타났다. 특히 메틸렌 블루의 광분해 반응을 보면, CdZnS/ZnO 광촉매 상에서는 주로 단일분자 형태로 전체 반응이 진행되지만, CdS 상에서는 반응 초기부터 이량체를 형성하였다. 이와 같은 결과들은 CdS 및 CdZnS/ZnO 각각의 반도체 광촉매들의 전도대의 띠끝 전위 차이와 염료들의 흡착 특성 차이에 기인한 것으로 판단된다.

Effects of Salicylate and Glucose on Biodegradation of Phenanthrene by Burkholderia cepacia PM07

  • LEE DAE SUNG;LEE MIN WOO;WOO SEUNG HAN;PARK JONG MOON
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.859-865
    • /
    • 2005
  • The stimulatory effects of exogenous salicylate as a pathway inducer on phenanthrene biodegradation were investigated using Burkholderia cepacia PM07. The phenanthrene degradation rate was greatly enhanced by increasing the salicylate additions, and the maximum rate was 19.6 mg $I^{-1}\;d^{-1}$ with the addition of 200 mg $I^{-1}$ of salicylate, 3.5 times higher than that (5.6 mg $I^{-1}\;d^{-1}$) without the addition of salicylate. The degradation rate was decreased at higher concentrations of salicylate (above 500 mg$I^{-1}$), and cell growth was significantly inhibited. The phenanthrene degradation was not affected by increasing glucose up to 2 g $I^{-1}$, although dramatic microbial growth was obtained. The stimulatory effect of exogenous salicylate decreased in the presence of glucose. After the addition of 200 mg $I^{-1}$ of salicylate, approximately $60\%$ of the initial phenanthrene (50 mg $I^{-1}$) was degraded after 96 h. However, with extra addition of 200 mg $I^{-1}$ of glucose, the phenanthrene degradation rate decreased, and only $18.5\%$ of the initial phenanthrene was degraded.