• 제목/요약/키워드: degradation pathway

Search Result 432, Processing Time 0.039 seconds

Evaluation of different types of mixed microbial culture for biomethanation of CO2 (식종슬러지 종류에 따른 이산화탄소 이용 바이오메탄 생산 비교)

  • Kim, Tae-Hoon;Lim, Byung-Seo;Yi, Sung-Ju;Yun, Gwang-Sue;Ahn, Byung-Kyu;Enkhtsog, Michidmaa;Yun, Yeo-Myeong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2020
  • The aims of this study were to compare the biomethanation of CO2 through specific methanogenic activity (SMA) test which was inoculated with four different types of mixed microbial culture obtained from full-scale anaerobic digestion (AD) plants. The experimental results showed that CH4 conversion was the highest in the samples inoculated by seed sludge taken from ADs of food waste and brewery; under this condition, the produced biomethane contains 89.3-91.9% of CH4. Meanwhile, the lowest level was obtained in the sample from sewage sludge. The measured ratio of CH4 production rate to CO2 consumption rate in all reactors was higher than the theoretical value (1) in the middle of the period and soon dropped to 0.7-0.8. It might be due to changed metabolic pathways in the reactor by the degradation of residual organic matter and the increased activity of homoacetogenic bacteria.

Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins

  • Ha, Seung Hee;Kim, Hyoung Kyu;Nguyen, Thi Tuyet Anh;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.531-546
    • /
    • 2017
  • Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor alpha ($TNF-{\alpha}$) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including 'chemotaxis', 'hematopoietic organ development', 'positive regulation of cell proliferation', and 'regulation of cytokine biosynthetic process'. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.

Prostaglandin E2 Reverses Curcumin-Induced Inhibition of Survival Signal Pathways in Human Colorectal Carcinoma (HCT-15) Cell Lines

  • Shehzad, Adeeb;Islam, Salman Ul;Lee, Jaetae;Lee, Young Sup
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.899-906
    • /
    • 2014
  • Prostaglandin $E_2$ ($PGE_2$) promotes tumor-persistent inflammation, frequently resulting in cancer. Curcumin is a diphenolic turmeric that inhibits carcinogenesis and induces apoptosis. $PGE_2$ inhibits curcumin-induced apoptosis; however, the underlying inhibitory mechanisms in colon cancer cells remain unknown. The aim of the present study is to investigate the survival role of $PGE_2$ and whether addition of exogenous $PGE_2$ affects curcumininduced cell death. HCT-15 cells were treated with curcumin and $PGE_2$, and protein expression levels were investigated via Western blot. Reactive oxygen species (ROS) generation, lipid peroxidation, and intracellular glutathione (GSH) levels were confirmed using specific dyes. The nuclear factor-kappa B ($NF-{\kappa}B$) DNA-binding was measured by electrophoretic mobility shift assay (EMSA). $PGE_2$ inhibited curcumin-induced apoptosis by suppressing oxidative stress and degradation of PARP and lamin B. However, exposure of cells to the EP2 receptor antagonist, AH6809, and the PKA inhibitor, H89, before treatment with $PGE_2$ or curcumin abolished the protective effect of $PGE_2$ and enhanced curcumin-induced cell death. $PGE_2$ activates PKA, which is required for cAMP-mediated transcriptional activation of CREB. $PGE_2$ also activated the Ras/Raf/Erk pathway, and pretreatment with PD98059 abolished the protective effect of $PGE_2$. Furthermore, curcumin treatment greatly reduced phosphorylation of CREB, followed by a concomitant reduction of $NF-{\kappa}B$ (p50 and p65) subunit activation. $PGE_2$ markedly activated nuclear translocation of $NF-{\kappa}B$. EMSA confirmed the DNA-binding activities of $NF-{\kappa}B$ subunits. These results suggest that inhibition of curcumin-induced apoptosis by $PGE_2$ through activation of PKA, Ras, and $NF-{\kappa}B$ signaling pathways may provide a molecular basis for the reversal of curcumin-induced colon carcinoma cell death.

Rice Proteomics: A Functional Analysis of the Rice Genome and Applications (프로테옴 해석에 의한 벼 게놈 기능해석과 응용)

  • Woo, Sun-Hee;Kim, Hong-Sig;Song, Berm-Heun;Lee, Chul-Won;Park, Young-Mok;Jong, Seung-Keun;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.281-291
    • /
    • 2003
  • In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is the most prevalent technique to rapidly identify a large number of proteome analysis. However, the conventional Western blotting/sequencing technique has been used in many laboratories. As a first step to efficiently construct protein cata-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein sports are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins(i, e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 45% of total rice cDNA have been deposited in the EMBL database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that tuned out to be calreticulin, gibberellin-binding protein, which is ribulose-1.5-bisphosphate carboxylase/oxygense active in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins(http://genome.c.kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Also, the information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful be in the plant molecular breeding.

Plasminogen Activator Inhibitor Type 1 (PAI-1) A15T Gene Polymorphism Is Associated with Prognosis in Patients with EGFR Mutation Positive Pulmonary Adenocarcinoma

  • Lim, Ju Eun;Park, Moo Suk;Kim, Eun Young;Jung, Ji Ye;Kang, Young Ae;Kim, Young Sam;Kim, Se Kyu;Shim, Hyo Sup;Cho, Byoung Chul;Chang, Joon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.4
    • /
    • pp.140-149
    • /
    • 2013
  • Background: Plasminogen activator inhibitor type 1 (PAI-1), an important regulator of plasminogen activator system which controls degradation of extracellular membrane and progression of tumor cells, and PAI-1 gene polymorphic variants have been known as the prognostic biomarkers of non-small cell lung cancer patients. Recently, experimental in vitro study revealed that transforming growth factor-${\beta}1$ initiated PAI-1 transcription through epithelial growth factor receptor (EGFR) signaling pathway. However, there is little clinical evidence on the association between PAI-1 A15T gene polymorphism and prognosis of Korean population with pulmonary adenocarcinoma and the influence of activating mutation of EGFR kinase domain. Methods: We retrospectively reviewed the medical records of 171 patients who were diagnosed with pulmonary adenocarcinoma and undergone EGFR mutation analysis from 1995 through 2009. Results: In all patients with pulmonary adenocarcinoma, there was no significant association between PAI-1 A15T polymorphic variants and prognosis for overall survival. However, further subgroup analysis showed that the group with AG/AA genotype had a shorter 3-year survival time than the group with GG genotype in patients with EGFR mutant-type pulmonary adenocarcinoma (mean survival time, 24.9 months vs. 32.5 months, respectively; p=0.015). In multivariate analysis of 3-year survival for patients with pulmonary adenocarcinoma harboring mutant-type EGFR, the AG/AA genotype carriers had poorer prognosis than the GG genotype carriers (hazard ratio, 7.729; 95% confidence interval, 1.414-42.250; p=0.018). Conclusion: According to our study of Korean population with pulmonary adenocarcinoma, AG/AA genotype of PAI-1 A15T would be a significant predictor of poor short-term survival in patients with pulmonary adenocarcinoma harboring mutant-type EGFR.

Neuroprotective Effects of Cheongnoemyeongsin-hwan against Hydrogen Peroxide-induced DNA Damage and Apoptosis in Human Neuronal-Derived SH-SY5Y Cells (인체 신경세포에서 청뇌명신환(淸腦明神丸)의 산화적 스트레스에 대한 세포보호 효과)

  • Pi, Guk Hyun;Hwang, Won Deuk
    • Herbal Formula Science
    • /
    • v.25 no.1
    • /
    • pp.51-68
    • /
    • 2017
  • Objectives : Oxidative stress due to excessive accumulation of reactive oxygen species (ROS) is one of the risk factors for the development of several chronic diseases, including neurodegenerative diseases. Methods : In the present study, we investigated the protective effects of cheongnoemyeongsin-hwan (CNMSH) against oxidative stress‑induced cellular damage and elucidated the underlying mechanisms in neuronal-derived SH-SY5Y cells. Results : Our results revealed that treatment with CNMSH prior to hydrogen peroxide (H2O2) exposure significantly increased the SH-SY5Y cell viability, indicating that the exposure of the SH-SY5Y cells to CNMSH conferred a protective effect against oxidative stress. CNMSH also effectively attenuated H2O2‑induced comet tail formation, and decreased the phosphorylation levels of the histone ${\gamma}H2AX$, as well as the number of apoptotic bodies and Annexin V‑positive cells. In addition, CNMSH exhibited scavenging activity against intracellular ROS generation and restored the mitochondria membrane potential (MMP) loss that were induced by H2O2, suggesting that CNMSH prevents H2O2‑induced DNA damage and cell apoptosis. Moreover, H2O2 enhanced the cleavage of caspase-3 and degradation of poly (ADP-ribose)-polymerase, a typical substrate protein of activated caspase-3, as well as DNA fragmentation; however, these events were almost totally reversed by pretreatment with CNMSH. Furthermore, CNMSH increased the levels of heme oxygenase-1 (HO-1), which is a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2-related factor 2 (Nrf2). According to our data, CNMSH is able to protect SH-SY5Y cells from H2O2-induced apoptosis throughout blocking cellular damage related to oxidative stress through a mechanism that would affect ROS elimination and activating Nrf2/HO-1 signaling pathway. Conclusions : Therefore, we believed that CNMSH may potentially serve as an agent for the treatment and prevention of neurodegenerative diseases caused by oxidative stress.

Characterization of Pseudomonas putida 1K1 Capable of Growing on Extremely High Concentration of Toluene (고농도 Toluene에서 생육 가능한 Pseudomonas putida 1K1의 특성)

  • Cho, Kyung-Yun;Chun, Hyo-Kon;Han, Dong-Cho;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.3
    • /
    • pp.236-240
    • /
    • 1989
  • The isolated bacterial strain 1K1 able to grow on extremely high concentration of toluene was morphologically and physiologically best described as Pseudomonas putida. This strain could grow on at least eight aromatic compounds, e.g., benzene, benzoate, phenol, o-cresol, m-cresol, toluene, m-tolunte, and xylene, but did not Brow on alkanes, such as hexane, octane, decane, and cyclohexane. Strain 1K1 could grow on above 95% toluene, but it could not grow on above 1% of other aromatic compounds. In the point of survival, strain 1K1 was resistant to high concentration of alkanes, appreciably resistant to toluene and xylene, and damaged by to other aromatic compounds. Strain 1K1 which grew on high concentration of toluene had irregular cell shape in comparing with normal cell shape of the genus Pseudomonas. Strain 1K1 was shown to have at least two aromatic compound dissimilation pathway, one for benzoate and the other for toluene.

  • PDF

Sulforaphane-Induced Apoptosis was Regulated by p53 and Caspase-3 Dependent Pathway in Human Chondrosarcoma, HTB-94 (Sulforaphane에 의한 p53 및 caspase-3 의존 신호전달계를 통한 인간 연골암 세포주 HTB-94에서의 세포사멸 기전 연구)

  • Lee, Won-Kil;Kim, Song-Ja
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.851-857
    • /
    • 2011
  • Sulforaphane (SFN) is an isothiocyanate, isolated from glucoraphanin in broccoli and other cruciferaous vegetables. Recent studies have revealed that SFN induces anti-proliferation and apoptosis by cell cycle arrest in various cancer cells. In this study, we investigated the effect of SFN induced apoptosis in chondrosarcoma HTB-94 cells. SFN caused suppression of proliferation and apoptosis in a dose-dependent manner as determined by cell phenotype, MTT assay and FACS analysis in HTB-94 cells. Treatment of SFN led to caspase-3 activation and p53 accumulation as determined by Western blot analysis. Also, SFN significantly induced DNA fragmentation and nuclear degradation though activation of caspase-3, as detected by DNA electrophoresis and immunostaining, respectively. Our results indicate that SFN-induced apoptosis was regulated by p53 and caspase-3 dependent pathways. Furthermore, SFN may act as a potent anti-proliferation agent, and as a promising candidate for molecular-targeting chemotherapy against human chondrosarcoma cells.

Induction of Apoptosis by Citri Pericarpium Methanol Extract through Reactive Oxygen Species Generation in U937 Human Leukemia Cells (진피 메탄올 추출물의 활성산소종 생성을 통한 인체 백혈병 세포의 apoptosis 유발)

  • Kim, Ga Hee;Lee, Moon Hee;Han, Min Ho;Park, Cheol;Hong, Su Hyun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1057-1063
    • /
    • 2013
  • Citri Pericarpium is one of the most commonly used traditional herbal medicines in Korea, China, and Japan. Its extracts have many properties including the treatment of indigestion and inflammatory respiratory syndromes such as bronchitis and asthma. However, the underlying molecular mechanisms of anti-cancer activity and molecular targets are not fully understood. In this work, we investigated the anti-proliferative activity of Citri Pericapium (EMCP) methanol extract on reactive oxygen species (ROS) production and the association of these effects with apoptotic cell death using U937 human leukemia cells in vitro. EMCP treatment decreased cell proliferation in a dose-dependent manner following an increase of the sub-G1 phase, the down-regulation of Bax proteins, the activation of caspases, the degradation of poly (ADP-ribose) polymerase proteins (PARP), and the induction of ROS generation. However, the quenching of ROS generation by N-acetyl-L-cysteine administration, a scavenger of ROS, reversed the EMCP-induced apoptosis effects. In addition, heme oxygenase-1 expression also recovered by inhibiting the nuclear translocation of phosphorylated NF-E2-related factor 2. Taken together, our data indicate that ROS are involved as key mediators in the early molecular events in the EMCP-induced apoptotic pathway.

Different Responses to Arsenic Trioxide between NB4 and UF-1, Acute Promyelocytic Leukemia Cell Lines (급성 전골수성 백혈병 세포주간의 삼산화비소에 대한 반응)

  • Kim, Hye-Ran;Choi, Yoon-Jeong;Ryu, Seong-Yeoll;Lee, Young-Seok;Lee, Sang-Hwa
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.759-766
    • /
    • 2006
  • Acute promyelocytic leukemia (APL) is a myeloid leukemia caused by over-expression of fusion protein, PML/RAR$({\alpha})$, which was the result of chromosomal translocation and induces the blockage of differentiation of affected promyelocytes. Pharmacological dose of retinoic acid induces the activation of and subsequent degradation of PML/RAR$({\alpha})$ fusion protein, and then APL cells undergo through the normal differentiation pathway. Arsenic trioxide has proved effective in causing remission of acute promyelocytic leukemia by inducing apoptosis of this tumor cells, whereas the heterogeneity of cellular susceptibility to this cytotoxic agent limited its usage on more types of tumors in clinic. This work showed that arsenic trioxide could induce apoptosis of a panel of acute promyelocytic leukemic cell lines, all-trans-retinoic acid (ATRA) sensitive NB4 cells and ATRA resistant UF-1 cell. They were investigated with regard to the correlation between the inherent or intrinsic cellular level of GSH and the apoptotic susceptibility of the cells to arsenic trioxide. We manifested, in two cell types, the inherently existed difference in intracellular GSH level reactive to the arsenic trioxide, and a positive correlation between the GSH level and their apoptotic sensitivity to arsenic trioxide. And it showed that arsenic trioxide could differentiate promyelocytic cancer cells to the cells possessed of dendritic cell surface markers. Unravelling the cause of the different susceptibility between leukemic cells and proving that promyelocyte could be differentiated to dendritic cells by arsenic trioxide will help not only to understand the mechanism underlying the complete remission of acute promyelocytic leukemia induced by arsenic trioxide, but also to expand its clinical usage.