• Title/Summary/Keyword: degradation fate

Search Result 57, Processing Time 0.023 seconds

Solubilization Characteristics of Piggery Slurry by Different Storage type and Temperature Conditions (돈분 슬러리의 저장형태 및 온도에 따른 가용화 특성)

  • Park, Woo-Kyun;Jun, Hang-Bae;Park, Noh-Back;Hong, Seung-Gil
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.348-353
    • /
    • 2010
  • The current study investigated the fate of organic matter in piggery slurry under two different store systems(closed store system and open store system) in association with different temperature. Thirty days after storing in both systems at $20^{\circ}C$, it was observed that the content of organic matter remained in piggery slurry with closed store system was twice more than that with open store system implying more efficient degradation of organic matter with open store system. Temperature also influenced on the organic matter degradation in piggery slurry as shown decline in TS and VS contents as the temperature increased. With store at $35^{\circ}C$, 29% of initial organic matter was reduced while there was only 23% reduction of organic matter at $20^{\circ}C$. There was no difference in the type of organic fatty acids(VFAs) produced under the range of temperature(20, $35^{\circ}C$) simulating summer condition. Increases in organic fatty acids contents with hydrolysis and acid producing microbial was observed from 15 days after initiating store of the piggery slurry and the total organic acid amount produced 30 days after store was $2,829\;mg{\cdot}COD/L$ and $9,123\;mg{\cdot}COD/L$ at $20^{\circ}C$ and $35^{\circ}C$, respectively. These corresponded to 5.4% and 17.4% of the initial organic matter contents in piggery slurry, respectively.

Effects of Glutamine Deprivation and Serum Starvation on the Growth of Human Umbilical Vein Endothelial Cells (재대정맥 내피세포의 증식에 미치는 글루타민 및 혈청 결핍의 영향)

  • Jeong, Jin-Woo;Lee, Hye Hyeon;Park, Cheol;Kim, Wun-Jae;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.926-932
    • /
    • 2013
  • Glutamine and serum are essential for cell survival and proliferation in vitro, yet the signaling pathways that sense glutamine and serum levels in endothelial cells remain uninvestigated. In this study, we examined the effects of glutamine deprivation and serum starvation on the fate of endothelial cells using a human umbilical vein endothelial cell (HUVEC) model. Our data indicated that glutamine deprivation and serum starvation trigger a progressive reduction in cell viability through apoptosis induction in HUVECs as determined by DAPI staining and flow cytometry analysis. Although the apoptotic effects were more predominant in the glutamine deprivation condition, both apoptotic actions were associated with an increase in the Bax/Bcl-2 (or Bcl-xL) ratio, down-regulation of the inhibitor of apoptosis protein (IAP) family proteins, activation of caspase activities, and concomitant degradation of poly (ADP-ribose) polymerases. Moreover, down-regulation of the expression of Bid or up-regulation of truncated Bid (tBid) were observed in cells grown under the same conditions, indicating that glutamine deprivation and serum starvation induce the apoptosis of HUVECs through a signaling cascade involving death-receptor-mediated extrinsic pathways, as well as mitochondria-mediated intrinsic caspase pathways. However, apoptosis was not induced in cells grown in glutamine- and serum-free media when compared with cells exposed to glutamine deprivation or serum starvation alone. Taken together, our data indicate that glutamine deprivation and serum starvation suppress cell viability without apoptosis induction in HUVECs.

xCyp26c Induced by Inhibition of BMP Signaling Is Involved in Anterior-Posterior Neural Patterning of Xenopus laevis

  • Yu, Saet-Byeol;Umair, Zobia;Kumar, Shiv;Lee, Unjoo;Lee, Seung-Hwan;Kim, Jong-Il;Kim, SungChan;Park, Jae-Bong;Lee, Jae-Yong;Kim, Jaebong
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.352-357
    • /
    • 2016
  • Vertebrate neurogenesis requires inhibition of endogenous bone morphogenetic protein (BMP) signals in the ectoderm. Blocking of BMPs in animal cap explants causes the formation of anterior neural tissues as a default fate. To identify genes involved in the anterior neural specification, we analyzed gene expression profiles using a Xenopus Affymetrix Gene Chip after BMP-4 inhibition in animal cap explants. We found that the xCyp26c gene, encoding a retinoic acid (RA) degradation enzyme, was upregulated following inhibition of BMP signaling in early neuroectodermal cells. Whole-mount in situ hybridization analysis showed that xCyp26c expression started in the anterior region during the early neurula stage. Overexpression of xCyp26c weakly induced neural genes in animal cap explants. xCyp26c abolished the expression of all trans-/cis-RA-induced posterior genes, but not basic FGF-induced posterior genes. Depletion of xCyp26c by morpholino-oligonucleotides suppressed the normal formation of the axis and head, indicating that xCyp26c plays a critical role in the specification of anterior neural tissue in whole embryos. In animal cap explants, however, xCyp26c morpholinos did not alter anterior-to-posterior neural tissue formation. Together, these results suggest that xCyp26c plays a specific role in anterior-posterior (A-P) neural patterning of Xenopus embryos.

Modeling for the fate of Organic Chemicals in a Multi-media Environment Using MUSEM (다매체 환경 모델 MUSEM을 이용한 유해화학물질의 환경거동예측 모델링)

  • Roh, Kyong-Joon;Kim, Dong-Myung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.201-210
    • /
    • 2007
  • Pollution by chemical substances such as POPs, EDCs and PBTs in the ecosystem has become more complex and varied, increasing the possibility of irreversible damage to human health or the ecosystem. It is necessary to have a exposure assessment in a multi-media environment for various chemical substances is required for efficient management. This study applied MUSEM(Multi-media Simplebox-systems Environmental Model), a multimedia environmental model that can simultaneously evaluate the possibility of exposure of hundreds of chemical substances in order to efficiently manage chemical substances that can have negative impact on human health or ecological environment through environmental contamination. MUSEM executed the modeling for Japan by setting all 47 prefectures of japan as the regional area for 62 chemical substances and the rest of the territory of japan, excluding regional area, as the continental area and made the estimation of concentration among environment media in each administrative area and made the sensitivity analysis on Tokyo area. The results of simulation for chemical distribution showed that most of the target chemicals located in water region. The result of sensitivity analysis for octanol-water partition rate showed that the concentration change of soil in urban/industrial area and sediment in freshwater was high. In the case of sensitivity analysis for degradation rate showed that the concentration change of freshwater, soil in urban/industrial area, and sediment in freshwater was high.

  • PDF

A Study on the Evolution of 3,4-DCA and TCAB in Some Selected Soils(Part II) -Degradation of $^{14}C-3,4-DCA\;and\;^{14}C-TCAB$- (수종토양중(數種土壤中)에서 3,4-DCA 및 TCAB의 변화(變化)에 관(關)한 연구(硏究)(제2보(劑二報)) -$^{14}C-3,4-DCA$$^{14}C-TCAB$ 의 분해(分解)-)

  • Lee, Jae-Koo;Fournier, J.C.
    • Applied Biological Chemistry
    • /
    • v.21 no.2
    • /
    • pp.71-80
    • /
    • 1978
  • In an attempt to elucidate the fate of 3,4-DCA and TCAB in various French soils, uniformly $^{14}C-ring-labeled$ 3,4-DCA and TCAB mere utilized and the following results obtained. 1) The rate of breakdown of $^{14}C-3,4-DCA$ into $^{14}CO_2$ was relatively higher in the early stage than that in the later stage. In 6 months of incubation in alkaline soil (pH 7.9), the rate was as high as 6.5% at dose 1 (1.5 ppm) and as low as 1.92% at dose 2(94 ppm), whereas in organic acid soil (pH 5.5) the rate was 4.91% at dose 1 and 4.24% at dose 2, respectively, without making any great difference between the two levels. 2) At dose 1, 47.70% of the initial radioactivity of $^{14}C-3,4-DCA$ was bound to soil in organic acid soil and 29.49% bound in alkaline soil, whereas at dose 2, 38.40% in organic acid soil and 20.30% in alkaline soil, respectively. 3) The amount of formation of $^{14}C-TCAB$ from $^{14}C-3,4-DCA$ seems to depend largely on the concentration of 3,4-DCA applied rather than on soil types. At dose 2, the amount was 50% of the total radioactivity extracted in organic acid soil and 30% in alkaline soil, corresponding to 1.8% and 1.4% of the initial radioactivity applied to soil, respectively. Cis-TCAB also seemed to be formed at dose 2 in both soils. Meanwhile, at dose 1, even though $^{14}C-TCAB$ was detected in trace on tlc and glc in both soils, the amount does not exceed 2 to 3% of the radioactivity extracted, corresponding to 0.05 to 0.1% of the initial radioactivity. 4) The rate of breakdown of $^{14}C-TCAB$ into $^{14}CO_2$ ranged from 0.05 to 0.20% in all the four soils. Most of the applied $^{14}C-TCAB$ remained intact after 3 months, not producing any detectable metabolites. 5) The fact that much more $^{14}C-TCAB$ was adsorbed to alkaline soil than to the other soils strongly indicates that in alkaline condition trans-isomer was converted tocisisomer which has the higher adsorption affinity than the former.

  • PDF

OECD High Production Volume Chemicals Program: Ecological Risk Assessment of Copper Cyanide (대량생산화학물질 초기위해성평가: 시안화구리의 초기 생태위해성평가)

  • Baek, Yong-Wook;Kim, Eun-Ju;Yoo, Sun-Kyoung;Ro, Hee-Young;Kim, Hyun-Mi;Eom, Ig-Chun;Kim, Pil-Je
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.272-279
    • /
    • 2011
  • Copper cyanide is a chemical produced in large quantities with 2,500 tonnes being produced in 2006. It is mainly used for electroplating copper, particularly alkali-Cu plate and brass plating. The purpose of this study is to reassess the physicochemical properties and environmental fate of copper cyanide based on reliable data and and to conduct an ecotoxicity test according to the OECD test guidelines as an initial environmental risk assessment (need to state where this was done). Metal containing inorganic substances are not subject to degradation, biodegradation or hydrolysis. Aquatic toxicity tests of copper cyanide were conducted according to OECD test guideline 201, 202 and 203 for green algae, daphnia, and fish, respectively. The following acute toxicity test results were obtained for aquatic species: 0.089 mg $L^{-1}$ (Algae, 72 Hr-$EC_{50}$); 0.21 mg $L^{-1}$ (flea, 48 Hr-$LC_{50}$); 0.62 mg $L^{-1}$ (Fish, 96 Hr-$ErC_{50}$). The chemical possesses properties indicating a hazard for the aquatic environment (acute toxicity in fish, daphnia and algae below 1.0 mg $L^{-1}$). As a result of this study, copper cyanide has become a candidate for detailed risk assessment. Countries that produce this chemical in significant quantities are recommended to perform specific assessments.

Behaviour of the Soil Residues of the Acaricide-Insecticide, [$^{14}C$]Acrinathrin;I. Behaviour during Crop(Maize) Cultivation (살비살충제 [$^{14}C$Acrinathrin 토양 잔류물의 행적 규명;I. 농작물(옥수수) 재배시의 행적)

  • Lee, Jae-Koo;Kyung, Kee-Sung;Kwon, Jeong-Wook;Ahn, Ki-Chang;Jung, In-Sang
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.186-201
    • /
    • 1995
  • In order to elucidate the fate of the residues of the pyrethroid acaricide-insecticide, acrinathrin in soil, maize plants were grown for one month on the specially-made pots filled with two different types of soils containing fresh and one-month-aged residues of [$^{14}C$]acrinathrin, respectively. The mineralization of [$^{14}C$]acrinathrin to $^{14}CO_2$ during the one-month period of aging and of maize cultivation amounted to $23{\sim}24%$ and $24{\sim}33%$, respectively, of the original $^{14}C$ activities. At harvest after one-month growing, the shoots and roots contained less than 0.1% and 1% of the originally applied $^{14}C$ activity, respectively, whereas the $^{14}C$ activity remaining in soil was $65{\sim}80%$ in both soils. Three degradation products with m/z 198(3-phenoxybenzaldehyde), m/z 214(3-phenoxybenzoic acid), and m/z 228(methyl 3-phenoxybenzoate) besides an unknown were identified from acetone extracts of both soils without and with maize plants after treatment of [$^{14}C$]acrinathrin, by autoradiography and GC-MS, and those with m/z 225(3-phenoxybenzaldehyde cyanohydrin) and m/z 198 (3-phenoxybenzaldehyde) from acetone extract of the Soil A treated with 50 ppm acrinathrin and grown with maize plants for 30 days were identified by mass spectrometry. These results suggested that the hydrolytic cleavage of the ester linkage adjacent to the $^{14}C$ with a cyano group, forming 3-phenoxybenzaldehyde cyanohydrin. The removal of hydrogen cyanide therefrom leads to the formation of 3-phenoxybenzaldehyde as one of the major products. The subsequent oxidation of the aldehyde to 3-phenoxybenzoic acid, followed by decarboxylation would evolve $^{14}CO_2$. Solvent extractability of the soils where maize plants were grown for 1 month and/or [$^{14}C$]acrinathrin was aged for 1 month was less than 31% of the original $^{14}C$ activity and over 95% of the total $^{14}C$ activity in soil extracts was distributed in the organic phase. Accordingly, acrinathrin turned out to be degraded rapidly in both soils and be bound to soil constituents as well, not being available to crops.

  • PDF