• Title/Summary/Keyword: degradation efficiency

Search Result 1,102, Processing Time 0.026 seconds

TREATMENT OF ANIMAL MANURE AND WASTES FOR ULTIMATE DISPOSAL - Review -

  • Winter, J.;Hilpert, R.;Schmitz, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.2
    • /
    • pp.199-215
    • /
    • 1992
  • Sources of organic waste materials for aerobic and/or anaerobic degradation, or for composting of solid wastes in Germany were estimated. The basic microbiology and the energetics of these processes were compared with special emphasis on anaerobic degradation, for which a general degradation scheme of carbohydrates is presented. Advantages of anaerobic over aerobic treatment processes are pointed out and conditions for maintaining a highly stable anaerobic process as well as producing a sanitized, hygienic product are discussed. Reactor systems suitable for efficient treatment of wastes with a high or low proportion of suspended solids are principally compared and results of laboratory studies on the degradation of several wastes and animal manures summarized. Finally, a piggery slurry treatment factory for an ultimate slurry processing to obtain a dry fertilizer and a harmless, disposable liquid, as it is in operation in Helmond/Holland, is presented and preliminary process data are presented.

The degradation of EVA for the protection of solar cell by UV-rays irradiation (자외선 조사에 따른 태양전지 보호용 EVA의 열화)

  • 김규조;연복희;김승환;김완태;허창수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.177-180
    • /
    • 2000
  • We studied the degradation of EVA for the protection of solar cell by UV-rays irradiation. We investigated the reduction of electrical efficiency, photo transmmitance and degradation of EVA by UV-rays irradiation. We utilized the UV irradiation equiped with fluorescent 313nm UV lamp and radiated for 400 hours. For the chemial analysis, we used the UV-vis spectrometer, XPS and examined the degradation mechanism by UV irradiation. It is found that the discolored phenomena, the decrease of photo transmmitance and oxidation reaction is occured by UV irradiation on the EVA sample for the protection of solar cell.

  • PDF

Preparation of Nanoflake Bi2MoO6 Photocatalyst Using CO(NH2)2 as Structure Orientation and Its Visible Light Degradation of Tetracycline Hydrochloride

  • Hu, Pengwei;Zheng, Dewen;Xian, Yuxi;Hu, Xianhai;Zhang, Qian;Wang, Shanyu;Li, Mingjun;Cheng, Congliang;Liu, Jin;Wang, Ping
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.325-330
    • /
    • 2021
  • Bi2MoO6 (BMO) via the structure-directing role of CO(NH2)2 is successfully prepared via a facile solvothermal route. The structure, morphology, and photocatalytic performance of the nanoflake BMO are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), fluorescence spectrum analysis (PL), UV-vis spectroscopy (UV-vis) and electrochemical test. SEM images show that the size of nanoflake BMO is about 50 ~ 200 nm. PL and electrochemical analysis show that the nanoflake BMO has a lower recombination rate of photogenerated carriers than particle BMO. The photocatalytic degradation of tetracycline hydrochloride (TC) by nanoflake BMO under visible light is investigated. The results show that the nanoflake BMO-3 has the highest degradation efficiency under visible light, and the degradation efficiency reached 75 % within 120 min, attributed to the unique hierarchical structure, efficient carrier separation and sufficient free radicals to generate active center synergies. The photocatalytic reaction mechanism of TC degradation on the nanoflake BMO is proposed.

Efficiency comparison of advanced oxidation processes for ciprofloxacin removal from aqueous solutions: Sonochemical, sono-nano-chemical and sono-nano-chemical/persulfate processes

  • Igwegbe, Chinenye Adaobi;Ahmadi, Shahin;Rahdar, Somayeh;Ramazani, Alireza;Mollazehi, Abdol Raufeh
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.178-185
    • /
    • 2020
  • The aim of this study is to investigate the degradation of ciprofloxacin (CIP) from its aqueous solutions via different advanced oxidation processes (AOP). The effects of persulfate (PS) concentration, pH, zinc oxide nanoparticles (ZnO-NPs) dose, initial CIP concentration, and reaction time on the degradation of CIP were studied. It was found that the sonochemical (US) degradation is a less efficient process (with removal efficiency of 36%) compared to the sono-nano-chemical (US/ZnO) process which resulted in removal efficiency of 70%. Maximum removal of 99% was obtained using the sono-nano-chemical/PS (US/ZnO/PS) process at a frequency of 60 kHz, time of 10 min, pH of 7, initial CIP concentration of 25 mg/L, and PS concentration of 476.06 mg/L. The addition of PS and ZnO-NPs to the process enhanced the rate of US degradation of CIP. In addition, the kinetic parameters for the US/ZnO/PS process were obtained by fitting the kinetic data into the pseudo-first-order and pseudo-second-order kinetic models. The kinetic data was found to fit into the pseudo-first-order kinetic model than the pseudo-second-order model. The results showed that the AOP using US/ZnO/PS is a promising technique for the treatment of ciprofloxacin containing solutions.

Characteristics of Phenol Degradation by using UV/TiO2 Photocatalysis (UV/TiO2 광촉매반응에 의한 페놀의 분해 특성)

  • Shin, In-Soo;Choi, Bong-long;Lee, Seung-Mok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.488-493
    • /
    • 2004
  • The effects were examined from several conditions of $TiO_2$ photocatalysis reaction to phenols degradation by changing it's reacting conditions such as phenol concentration, pH, $TiO_2$ concentration, $H_2O_2$ concentration, flow rate, and intensity of ultraviolet rays. Phenol degradation was more efficient in low concentration of phenol, neutral pH. Phenol degradation appeared to increase as concentration of $TiO_2$ photocatalyst, that of $H_2O_2$ and intensity of ultraviolet rays increased. As $TiO_2$ dosage increased, initial rate constant k linearly increased. When $H_2O_2$ was injected more than optimum, phenol removal rate didn't increase in proportional to the change of $H_2O_2$ concentration as OH radicals was being consumed. When flow rate is less than $4.75m^3/m^2$ day, phenol removal efficiency appeared to decrease as ultraviolet rays transmission rate becomes low by $TiO_2$ suspension coated in photo reaction column. Meanwhile, initial rate constant according to light intensity change in less than $25mW/cm^2$ appeared to be in proportion to light intensity ($mW/cm^2$) Removal efficiency decreased about 12% after 180 minutes of reaction time while showed stable removal efficiency of 100% after 300 minutes when using regenerated $TiO_2$.

Degradation Efficiencies of Gas Phase Hydrocarbons for Photocatalysis Reactor With TiO2Thin Film (TiO2광촉매 반응기의 기체상 탄화수소의 분해효율)

  • 이진홍;박종숙;김진석;오상협;김동현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.3
    • /
    • pp.223-230
    • /
    • 2002
  • Titania photocatalytic oxidation reactors were studied to investigate degradation efficiencies of hydrocarbons. In general, it is well known phenomena that thin layered titania oxidizes most of hydrocarbons to carbon dioxide and water under UV light. In this study, degradation efficiencies were measured due to changes in reactor structures, UV sources, the number of titania coatings, and various hydrocarbon chemicals. It was proven that gas degradation efficiencies are related to such factors as UV transmittance of coating substance, collision area of surface, and gas flow rate. For packing type annular reactor, about 98% degradation efficiency was achieved for achieved for propylene of 500 ppm level at a flow rate of 100 ml/min. Several gases were also tested for double-coated titania thin film under the condition of continuous flow of 100 ml/min and 365 nm UV source. It was shown that degradation efficiencies were decreasing in the order: $C_3$ $H_{6}$, n-C$_4$ $H_{10}$, $C_2$ $H_4$, $C_2$ $H_2$, $C_{6}$ $H_{6}$ and $C_2$ $H_{6}$./. 6/./.

Degradation of p-nitrophenol by Gamma Irradiation

  • Lee, O Mi;Kim, Tae-Hun;Yu, Seungho;Jung, In-ha;Lee, Myunjoo
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.353-357
    • /
    • 2011
  • Degradation of p-nitrophenol has been carried out using only gamma irradiation or gamma irradiation with $H_2O_2$ or $Na_2S_2O_8$. Effects of different operating parameters such as initial concentration ($50mg\;l^{-1}$, $100mg\;l^{-1}$, $200mg\;l^{-1}$, $300mg\;l^{-1}$, $400mg\;l^{-1}$, $500mg\;l^{-1}$ and $600mg\;l^{-1}$) on the extent of degradation has been investigated. At 5 kGy, $50mg\;l^{-1}$ p-nitrophenol was completely degraded, and the radiolytic degradation of p-nitrophenol was described by the pseudo-first-order kinetic model. The combination of gamma irradiation with $H_2O_2$ or $Na_2S_2O_8$ leads to an enhanced effect, which remarkably increased the degradation efficiency of p-nitrophenol and TOC removal. However, at high $H_2O_2$ concentration, the efficacy of p-nitrophenol degradation is reduced because ${\cdot}OH$ radicals are scavenged by $H_2O_2$ and $Na_2S_2O_8$.

Decomposition Characteristics of 1,4-dioxane in an E-beam Process and Toxicity Assessment (전자빔 공정을 적용한 1,4-dioxane의 제거특성 및 독성평가)

  • Hwang, Haeyoung;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.63-68
    • /
    • 2011
  • The aim of this study was 1,4-dioxane's degradation efficiency and toxicity test applying E-beam. The experiments were shows that the degradation efficiency in the initial concentration of 1,4-dioxane and the irradiation capacity of E-beam and the degree of mineralization based on a change of scavenger gas. The biological toxicity test by using on of green algae, Pseudokirchneriella Subcapitata was conducted to lead the reducing toxicity. Degradation efficiency of 1,4-dioxane was improved when E-beam irradiation intensity was higher and the efficiency of TOC removal using Radical scavenger gas was increased by $N_2O$, $O_2$ and $N_2$ in order. In 4 days(96hrs), toxicity test results indicated that toxicity effect was decreased by increase of E-beam irradiation intensity.

EFFECTS OF SURFACTANTS ON THE FENTON DEGRADATION OF PHENANTHRENE IN CONTAMINATED SEDIMENTS

  • Jee, Sang-Hyun;Ko, Seok-Oh;Jang, Hae-Nam
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.138-143
    • /
    • 2005
  • Laboratory batch experiments were conducted to evaluate the Fenton degradation rates of phenanthrene. Fenton reactions for the degradation of phenanthrene were carried out with aqueous and slurry phase, to investigate the effects of sorption of phenanthrene onto solid phase. Various types of surfactants and electrolyte solutions were used to evaluate the effects on the phenanthrene degradation rates by Fenton's reaction. A maximum 90% removal of phenanthrene was achieved in aqueous phase with 0.9% of $H_2O_2$ and 300 mg/L of $Fe^{2+}$ at pH 3. In aqueous phase reaction, inhibitory effects of synthetic surfactants on the removal of phenanthrene were observed, implying that surfactant molecules acted as strong scavenger of hydroxyl radicals. However, use of $carboxymethyl-{\beta}-cyclodextrin$ (CMCD), natural surfactant, showed a slight enhancement in the degradation of phenanthrene. It was considered that reactive radicals formed at ternary complex were located in close proximity to phenanthrene partitioned into CMCD cavities. It was also show that Fenton degradation of phenanthrene were greatly enhanced by addition of NaCl, indicating that potent radical ion ($OCI^-$) played an important role in the phenanthrene degradation, although chloride ion might be acted as scavenger of radicals at low concentrations. Phenanthrene in slurry phase was resistant to Fenton degradation. It might be due to the fact that free radicals were mostly reacting with dissolved species rather than with sorbed phenanthrene. Even though synthetic surfactants were added to increase the phenanthrene concentration in dissolved phase, low degradation efficiency was obtained because of the scavenging of radicals by surfactants molecules. However, use of CMCD in slurry phase, showed a slight enhancement in the phenanthrene degradation. As an alternative, use of Fenton reaction with CMCD could be considered to increase the degradation rates of phenanthrene desorbed from solid phase.

Degradation of Phenol in Water Using Circulation Dielectric Barrier Plasma Reactors (순환식 유전체 장벽 플라즈마 반응기를 이용한 수중 페놀 처리)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.251-260
    • /
    • 2012
  • Objectives: The purpose of this study was evaluating the applicability of the circulation dielectric barrier plasma process (DBD) for efficiently treating non-biodegradable wastewater, such as phenol. Methods: The DBD plasma reactor system in this study consisted of a plasma reactor (discharge, ground electrode and quartz dielectric tube, external tube), high voltage source, air supply and reservoir. Effects of the operating parameters on the degradation of phenol and $UV_{254}$ absorbance such as first voltage (60-180 V), oxygen supply rate (0.5-3 l/min), liquid circulation rate (1.5-7 l/min), pH (3.02-11.06) and initial phenol concentration (12.5-100 mg/l) were investigated. Results: Experimental results showed that optimum first voltage, oxygen supply rate, and liquid circulation rate on phenol degradation were 160 V, 1 l/min, and 4.5 l/min, respectively. The removal efficiency of phenol increased with the increase in the initial pH of the phenol solution. To obtain a removal efficiency of phenol and COD of phenol of over 97% (initial phenol concentration, 50.0 mg/l), 15 min and 180 minutes was needed, respectively. Conclusions: It was considered that the absorbance of $UV_{254}$ for phenol degradation can be used as an indirect indicator of change in non-biodegradable organic compounds. Mineralization of the phenol solution may take a relatively longer time than that required for phenol degradation.