• 제목/요약/키워드: deformation-dependent loads

검색결과 62건 처리시간 0.022초

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.145-153
    • /
    • 2019
  • Modified couple stress formulation and first order shear deformation theory are used for magneto-electro-elastic bending analysis of three-layered curved size-dependent beam subjected to mechanical, magnetic and electrical loads. The governing equations are derived using a displacement field including radial and transverse displacements of middle surface and a rotation component. Size dependency is accounted based on modified couple stress theory by employing a small scale parameter. The numerical results are presented to study the influence of small scale parameter, initial electric and magnetic potentials and opening angle on the magneto-electro-elastic bending results of curved micro beam.

A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations

  • Attia, Amina;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.;Alwabli, Afaf S.
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.453-464
    • /
    • 2018
  • In this paper, an efficient higher-order shear deformation theory is presented to analyze thermomechanical bending of temperature-dependent functionally graded (FG) plates resting on an elastic foundation. Further simplifying supposition are made to the conventional HSDT so that the number of unknowns is reduced, significantly facilitating engineering analysis. These theory account for hyperbolic distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Nonlinear thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from the principle of virtual displacements. Analytical solutions for the thermomechanical bending analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent FG plates and validated with those of other shear deformation theories. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature field on the thermomechanical bending characteristics. It can be concluded that the present theory is not only accurate but also simple in predicting the thermomechanical bending responses of temperature-dependent FG plates.

광폭인장시험을 통한 지오그리드의 시간의존적 변형 거동 고찰 (Time-dependent Deformation Charateristics of Geogrid Using Wide Width Tensile Test)

  • 유충식;전한용;김선빈
    • 한국지반공학회논문집
    • /
    • 제24권1호
    • /
    • pp.71-80
    • /
    • 2008
  • 본 논문에서는 보강토 구조물에 보강재로 적용되는 지오그리드의 시간 의존적 변형거동 특성에 대한 광폭 인장시험 결과를 제시하였다. 먼저, 다양한 보강재의 종류에 대해 인장속도에 따른 파단강도 및 강성의 변화에 대해 알아보았다. 또한 보강토 구조물이 사용연한 동안 받게될 다양한 하중 조건, 즉 지속하중 및 반복하중을 작용시킬 수 있는 장비를 특수 제작하여 지오그리드의 시간의존적 변형거동을 분석하였다. 그 결과 지속하중 및 반복하중 작용시 잔류변형은 보강재의 점성(viscous) 특성의 형태로서 쌍곡선 특성 곡선으로 잘 모사되는 것으로 분석되었으며 이러한 잔류변형은 시간의존적 점성거동의 측면에서 다루어야 하는 것으로 나타났다.

Vibration analysis of heterogeneous nonlocal beams in thermal environment

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.251-272
    • /
    • 2017
  • In this paper, the thermo-mechanical vibration characteristics of functionally graded (FG) nanobeams subjected to three types of thermal loading including uniform, linear and non-linear temperature change are investigated in the framework of third-order shear deformation beam theory which captures both the microstructural and shear deformation effects without the need for any shear correction factors. Material properties of FG nanobeam are assumed to be temperature-dependent and vary gradually along the thickness according to the power-law form. Hence, applying a third-order shear deformation beam theory (TSDBT) with more rigorous kinetics of displacements to anticipate the behaviors of FG nanobeams is more appropriate than using other theories. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The obtained results are compared with those predicted by the nonlocal Euler-Bernoulli beam theory and nonlocal Timoshenko beam theory and it is revealed that the proposed modeling can accurately predict the vibration responses of FG nanobeams. The obtained results are presented for the thermo-mechanical vibration analysis of the FG nanobeams such as the effects of material graduation, nonlocal parameter, mode number, slenderness ratio and thermal loading in detail. The present study is associated to aerospace, mechanical and nuclear engineering structures which are under thermal loads.

Damping Effect of Reinforced Polyurethane Foam under Various Temperatures

  • Lee, Tak-Kee;Kim, Myung-Hyun;Rim, Chae-Whan;Chun, Min-Sung;Suh, Yong-Suk
    • International Journal of Ocean System Engineering
    • /
    • 제1권4호
    • /
    • pp.230-235
    • /
    • 2011
  • Reinforced polyurethane foam (RPUF) is one of the important materials of Mark III type insulation systems used in liquefied natural gas (LNG) cargo containment systems. However, RPUF is the most difficult material to use with regard to its safety assessment, because there is little public and reliable data on its mechanical properties, and even some public data show relatively large differences. In this study, to investigate the structural response of the system under compressive loads such as sloshing action, time-dependent characteristics of RPUF were examined. A series of compressive load tests of the insulation system including RPUF under various temperature conditions was carried out using specimens with rectangular section. As a result, the relationship between deformation of RPUF and time is linear and dependent on the loading rate, so the concept of strain rate could be applied to the analysis of the insulation system. Also, we found that the spring constant tends to converge to a value as the loading rate increases and that the convergence level is dependent on temperature.

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari;Mojtaba Azhari
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.589-598
    • /
    • 2023
  • This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.

Stability of perforated nanobeams incorporating surface energy effects

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.555-566
    • /
    • 2020
  • This paper aims to present an analytical methodology to investigate influences of nanoscale and surface energy on buckling stability behavior of perforated nanobeam structural element, for the first time. The surface energy effect is exploited to consider the free energy on the surface of nanobeam by using Gurtin-Murdoch surface elasticity theory. Thin and thick beams are considered by using both classical beam of Euler and first order shear deformation of Timoshenko theories, respectively. Equivalent geometrical constant of regularly squared perforated beam are presented in simplified form. Problem formulation of nanostructure beam including surface energies is derived in detail. Explicit analytical solution for nanoscale beams are developed for both beam theories to evaluate the surface stress effects and size-dependent nanoscale on the critical buckling loads. The closed form solution is confirmed and proven by comparing the obtained results with previous works. Parametric studies are achieved to demonstrate impacts of beam filling ratio, the number of hole rows, surface material characteristics, beam slenderness ratio, boundary conditions as well as loading conditions on the non-classical buckling of perforated nanobeams in incidence of surface effects. It is found that, the surface residual stress has more significant effect on the critical buckling loads with the corresponding effect of the surface elasticity. The proposed model can be used as benchmarks in designing, analysis and manufacturing of perforated nanobeams.

Surface hardness measurement of NiP-plated AA7050

  • Moon, Sungmo;Kim, Juseok
    • 한국표면공학회지
    • /
    • 제54권4호
    • /
    • pp.171-177
    • /
    • 2021
  • This paper is concerned with the surface hardness measurement of NiP-coated AA7050 using different loads from 10 to 100 g. The surface hardness was observed to increase from 180 to 600 Hv with increasing NiP layer thickness, depending on the load applied for indentation. When NiP coating thickness is thinner than 2 ㎛, the surface hardness of NiP-coated AA7050 was mainly determined by AA7050 substrate, while it was significantly increased by NiP coating layer when NiP coating thickness is thicker than 2 ㎛. Hardness of AA7050 substrate itself was not dependent on the applied load but the hardness of NiP-coated AA7050 was largely influenced by the load applied for indentation. The largest difference of hardness between 10 g and 100g of applied loads, was obtained at the NiP thickness of about 8 ㎛ above which the measured hardness at 10 g reached a maximum value of about 600 Hv. It was also observed that indentation-induced plastic deformation next to the indented zone occurs when NiP layer is 5.64 times thicker than the depth of impression formed by indentation.

Size-dependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory

  • Arefi, Mohammad;Bidgoli, Elyas Mohammad-Rezaei;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.27-40
    • /
    • 2018
  • The governing equations of motion are derived for analysis of a sandwich microbeam in this paper. The sandwich microbeam is including an elastic micro-core and two piezoelectric micro-face-sheets. The microbeam is subjected to transverse loads and two-dimensional electric potential. Higher-order sinusoidal shear deformation beam theory is used for description of displacement field. To account size dependency in governing equations of motion, strain gradient theory is used to mention higher-order stress and strains. An analytical approach for simply-supported sandwich microbeam with short-circuited electric potential is proposed. The numerical results indicate that various types of parameters such as foundation and material length scales have significant effects on the free vibration responses and dynamic results. Investigation on the influence of material length scales indicates that increase of both dimensionless material length scale parameters leads to significant changes of vibration and dynamic responses of microbeam.

Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory

  • Bekkaye, Tahar Hacen Lamine;Fahsi, Bouazza;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad
    • Computers and Concrete
    • /
    • 제26권5호
    • /
    • pp.439-450
    • /
    • 2020
  • In this research, bending and buckling analyses of porous functionally graded (FG) plate under mechanical load are presented. The properties of the FG plate vary gradually across the thickness according to power-law and exponential functions. The material imperfection is considered to vary depending to a logarithmic function. The plate is modeled by a refined trigonometric shear deformation theory where the use of the shear correction factor is unnecessary. The governing equations of the FG plate are derived via virtual work principle and resolved via Navier solutions. The accuracy of the present model is checked by comparing the obtained results with those found in the literature. The various effects influencing the stresses, displacements and critical buckling loads of the plate are also examined and discussed in detail.