• Title/Summary/Keyword: deformation-based

Search Result 3,731, Processing Time 0.027 seconds

The Effect of the Nipple Protrusions on the Deformation Characteristics of the High-Pressure Hose in the Manufacturing Process (호스 제작시 니플 돌기부가 변형 특성에 미치는 영향)

  • Kim, Hynug-Je;Kim, Byung-Tak
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.51-56
    • /
    • 2002
  • In this paper, the stress and deformation characteristics of the high pressure hose that have the hose components such as rubber, braid and steel( sleeve and nipple) during the manufacturing process, and analyzed using the [mite element method The swaging process is modeled with a contact problem in identical conditions of real circumstances, and the properties of hose materials based on the experimental data are used in this analysis. Also, to understand the effect of the nipple protrusions on the deformation characteristics of a power steering hose among the steel materials shape of the existing model, and changed the steel materials shape partially, and compared with the existing model.

  • PDF

Average Flow Model with Elastic Deformation for CMP (화학적 기계 연마를 위한 탄성변형을 고려한 평균유동모델)

  • Kim Tae-Wan;Lee Sang-Don;Cho Yong-Joo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.331-338
    • /
    • 2004
  • We present a three-dimensional average flow model considering elastic deformation of pad asperities for chemical mechanical planarization. To consider the contact deformation of pad asperities in the calculation of the flow factor, three-dimensional contact analysis of a semi-infinite solid based on the use of influence functions is conducted from computer generated three dimensional roughness data. The average Reynolds equation and the boundary condition of both force and momentum balance are used to investigate the effect of pad roughness and external pressure conditions on film thickness and wafer position angle.

  • PDF

Multiscale modeling of the anisotropic shock response of β-HMX molecular polycrystals

  • Zamiri, Amir R.;De, Suvranu
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.139-153
    • /
    • 2011
  • In this paper we develop a fully anisotropic pressure and temperature dependent model to investigate the effect of the microstructure on the shock response of ${\beta}$-HMX molecular single and polycrystals. This micromechanics-based model can account for crystal orientation as well as crystallographic twinning and slip during deformation and has been calibrated using existing gas gun data. We observe that due to the high degree of anisotropy of these polycrystals, certain orientations are more favorable for plastic deformation - and therefore defect and dislocation generation - than others. Loading along these directions results in highly localized deformation and temperature fields. This observation confirms that most of the temperature rise during high rates of loading is due to plastic deformation or dislocation pile up at microscale and not due to volumetric changes.

The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories

  • Ellali, Mokhtar;Amara, Khaled;Bouazza, Mokhtar;Bourada, Fouad
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.113-122
    • /
    • 2018
  • In this article, an exact analytical solution for mechanical buckling analysis of magnetoelectroelastic plate resting on pasternak foundation is investigated based on the third-order shear deformation plate theory. The in-plane electric and magnetic fields can be ignored for plates. According to Maxwell equation and magnetoelectric boundary condition, the variation of electric and magnetic potentials along the thickness direction of the plate is determined. The von Karman model is exploited to capture the effect of nonlinearity. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical results reveal the effects of (i) lateral load, (ii) electric load, (iii) magnetic load and (iv) higher order shear deformation theory on the critical buckling load have been investigated. These results must be the analysis of intelligent structures constructed from magnetoelectroelastic materials.

Undrained Creep Characteristics of Silty Sands and Comparative Study of Creep model (실트질 모래의 비배수 크리프특성 및 크리프 모델 비교연구)

  • Bong, Tae-Ho;Son, Young-Hwan;Noh, Soo-Kack;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • Soils exhibit creep behavior in which deformation and movement proceed under a state of constant stress or load. In this study, A series of triaxial tests were performed under constant principal stress in order to interpret the undrained creep characteristics of silty sands. Although samples are non-plastic silty sands, the results of tests show that the creep deformation increasing over time. Based on the results of test, Singh-Mitchell model parameters and Generalized model coefficients were calculated. Generalized model showed slightly larger deformation in the primary creep range but secondary creep deformation was almost identical. Although Singh-Mitchell model showed relatively large errors compared to Generalized model because it uses the average of test results, but Singh-Mitchell model can be easily represented by three creep parameters.

The Geometric Error Analysis by Various Various Inputs In Surface Grinding (평면연삭에서 다변수 입력에 의한 형상오차 해석)

  • 김강석;홍순익;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.868-872
    • /
    • 1997
  • The thermal deformation of a workpiece during grinding is one of the most important factors that affect a flatness of a grinding surface. The heat generated in one-pass surface grinding causes the convex deformation of a workpiece. Therefore, the ground surface represents a conacve profile. In the analysis a simple model of the temperature distribution,based on the result of a finite element method, is applied. The analyzed results are compared with experimental results in surface grinding. The main results obtained are as follows; (1) The temperature distibution of a workpiece by FEM is comparatively in good agreement with the experimental results. (2) The bending moment by generated heat cause a convex deformation of the workpiece and it reads to a concave profile of the grinding surface.

  • PDF

Measurement of Thermal Diffusivity Using Deformation Gradient and Phase in the Photothermal Displacement Technique

  • Pilsoo Jeon;Lee, Kwangjai;Jaisuk Yoo;Park, Youngmoo;Lee, Jonghwa
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2078-2086
    • /
    • 2003
  • As technology advances with development of new materials, it is important to measure the thermal diffusivity of material and to predict the heat transfer in the solid subject to thermal processes. The measurement of thermal properties can be done in a non-contact way using photothermal displacement spectroscopy. In this work, the thermal diffusivity was measured by analyzing the magnitude and phase of deformation gradient. We proposed a new data analysis method based on the real part of deformation gradient as the pump-probe offset value. As the result, compared with the literature value, the measured thermal diffusivities of materials showed about 3 % error.

Study on The Estimation of Pipeline.Soil Interaction Force during Longitudinal Permanent Ground Deformation (종방향 영구지반변형 발생시 관.지반 상호작용력의 산정에 관한 연구)

  • 김태욱;임윤묵;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.114-122
    • /
    • 2002
  • The ASCE formula of lifeline.soil interaction force is the basis of semi-analytical relationship for buried pipelines subjected to longitudinal permanent ground deformation due to seismic induced liquefaction. However, since the ASCE formula has been developed based on the stiffness of non-liquefied region, it is needed to modify for the varied stiffness of liquefied region. With this object, the consideration of decreasing effect of soil stiffness in liquefied region is made: i.e. the spatial distributions of pipeline-soil interaction force in liquefied region. It means that the improved formula can reflect various patterns of permanent ground deformation more realistically. Through the comparative analyses using both the improved and ASCE formula, the applicability of the improved and the limitation of the ASCE formula and semi-analytical relationship are discussed. Also, relative influences of various parameters are evaluated for the clarification of behavior of pipeline subjected to longitudinal permanent ground deformation due to liquefaction.

  • PDF

A Displacement Analysis of 2-Dimensional Tool Vibrator (2차원 공구진동기구의 변위 해석)

  • 손성민;임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.898-901
    • /
    • 2000
  • In this paper, the theoretical tool displacement and surface roughness are analyzed based on the tool locus of a 2-dimensional tool vibrator. At first, the effects assuming no structural deformation of such variables as frequency, amplitude and phase difference that determine tool loci are simulated. The results show that larger amplitude and/or higher frequency makes better surface. However, a real tool vibrator has the structural deformation, much or less, depending on the excitation frequency. Applying FEM analysis to the deformation of a designed 2D tool vibrator according to the excitation, it has been proved that in this case the displacement is 5${\mu}{\textrm}{m}$ at 1KHz and almost 0 at 20KHz even under the same excitation amplitude.

  • PDF

A new approach for the cylindrical cavity expansion problem incorporating deformation dependent of intermediate principal stress

  • Zou, Jin-Feng;Xia, Ming-yao
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.347-360
    • /
    • 2017
  • The problem of cylindrical cavity expansion incorporating deformation dependent of intermediate principal stress in rock or soil mass is investigated in the paper. Assumptions that the initial axial total strain is a non-zero constant and the axial plastic strain is not zero are defined to obtain the numerical solution of strain which incorporates deformation-dependent intermediate principal stress. The numerical solution of plastic strains are achieved by the 3-D plastic potential functions based on the M-C and generalized H-B failure criteria, respectively. The intermediate principal stress is derived with the Hook's law and plastic strains. Solution of limited expansion pressure, stress and strain during cylindrical cavity expanding are given and the corresponding calculation approaches are also presented, which the axial stress and strain are incorporated. Validation of the proposed approach is conducted by the published results.