• Title/Summary/Keyword: deformation condition

Search Result 1,367, Processing Time 0.025 seconds

Forging Process Design by High Temperature Deformation Behavior of the 6061 Aluminum Alloy (자동차 휠용 6061 Al합금의 고온변형거동에 따른 단조성형조건 설계)

  • Lee, Dong-Geun;Lee, Ji Hye;Kim, Jeoung Han;Park, Nho Kwang;Lee, Yongtai;Jeong, Heon-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.449-457
    • /
    • 2008
  • Compression deformation behaviors at high temperature as a function of temperature and strain rate were investigated in the 6061 aluminum alloy, which is used for automobile wheel. Compression tests were carried out in the range of temperatures $300{\sim}475^{\circ}C$ and strain rate $10^{-3}{\sim}10^{-1}sec^{-1}$. By analyzing these results, strain rate sensitivity, deformation temperature sensitivity, the efficiency of power dissipation, Ziegler's instability criterion, etc were calculated, which were plastic deformation instability parameters as suggested by Ziegler, Malas, etc. Furthermore, deformation processing map was drawn by introducing dynamic materials model (DMM) and Ziegler's Continuum Criteria. This processing map was evaluated by relating the deformation instability conditions and the real microstructures. As a result, the optimum forging condition for the automobile wheel with the 6061 aluminum alloy was designed at temperature $450^{\circ}C$, strain rate $1.0{\times}10^{-1}sec^{-1}$. It was also confirmed by DEFORM finite element analysis tool with simulation process.

Elastic Deformation Induced Preload Change in Tilting Pad Journal Bearing (탄성변형으로 인한 틸팅패드 저널베어링의 예압 변화)

  • Donghyun Lee;Junho Suh
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.102-110
    • /
    • 2023
  • This study aims to quantify the variation in the performance of a tilting pad journal bearing (TPJB) owing to the elastic deformation of its pad. To this end, we first defined a parameter, "elastic preload", and predicted the changes in the performance of the TPJB, as a function of the preload amount. We used the iso-viscosity Reynolds equation, which ignores the temperature rise due to viscous shear in thin films, and the resultant thermal deformation of the bearing structure. We employed a three-dimensional finite element model to predict the elastic deformation of the bearing pad, and a transient analysis, to converge to a static equilibrium condition of the flexible pads and journal. Conducting a modal coordinate transformation helped us avoid heavy computational issues arising from a mesh refinement in the three-dimensional finite element pad model. Moreover, we adopted the Hertzian contact model to predict the elastic deformation at the pivot location. With the aforementioned overall strategy, we predicted the performance changes owing to the elastic deformation of the pad under varying load conditions. From the results, we observed an increase in the preload due to the pad elastic deformation.

3 Dimension Deformation Analysis by Close-Range Photogrammetry (근접사진측량에 의한 3차원 변형해석)

  • 배연성;오원진;한승희
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.135-140
    • /
    • 2003
  • This study try to surface deformation analyzing and 3-D monitoring of hydro structure by close-range photogrammetry technique using 35mm metric camera. For this, the lens distortion parameters were acquired for 21mm super-wide-angle lens which is mounted in 35mm metric camera. After that, the system designed for absolute deformation analysis of object surface, and examined the application validity Also, optimum photographing condition was derived by calculated the standard deviation of this system. This system can monitor periodically changing of surface area, volume and deformation precisely after placed plate underwater. Finally, this paper suggested efficiency of absolute deformation analysis by using small format camera.

  • PDF

Micro-Deformation of Tows According to Foam Density and Shear Angle During Hemisphere Draping Process (반구형 드레이핑 공정 중 포움의 밀도와 전단각에 따른 토우의 미세변형)

  • Chung Jee-Gyu;Chang Seung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.849-856
    • /
    • 2006
  • In this paper, fabric composite draping on hemisphere moulds were studied to find out the deformation behaviour of micro-tow structures of fabrics during draping and thermoforming. Aluminium and PVC foams were used to fabricate the hemisphere moulds for draping tests. In order to observe the local tow deformation pattern during the draping several specimens for microscopic observation were sectioned from the draped hemisphere structures. The effect of forming condition and mould properties on tow deformation was investigated by the microscopic observation of the tow parameters such as crimp angle. Normalization scheme was performed to compare tow parameter variations with different forming conditions. Stress-strain .elations of two different PVC foams (HT70 and HT110) were tested to investigate the effect of foam property on the micro-tow deformation during forming.

Interfacial instability of Boger fluid in the pull-off test between two circular plates

  • Kang Hyoung Mi;Kim Chongyoup
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.219-226
    • /
    • 2004
  • In this study the deformation of liquid-air interface of Newtonian or Boger fluids filled between two par­allel-plates geometry was investigated when two surfaces were separated at a constant speed. The interface between the fluid and air showed either stable or unstable deformation depending on experimental con­ditions. Repeated experiments for a wide range of experimental conditions revealed that the deformation mode could be classified into three types: 'stable region', 'fingering' and 'cavitation'. The experimental condition for the mode of deformation was plotted in a capillary number vs. Deborah number phase plane. It has been found that the elasticity of Boger fluids destabilize the interface deformation. On the other hand, the elasticity suppresses the formation and growth of cavities.

An Application of Plasticity Model for Ice Deformation Characteristics (수변형 특성에 있어서 소성 모델의 응용)

  • Choe, Gyeong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.15-21
    • /
    • 1990
  • This study focuses the mechanical deformation response predicted by the plasticity model for polycrystalline ice. To describe various deformation characteristics, ice is idealized as a perfectly plastic material using an asymptotic exponential failure criterion. This criterion is suite for describing materials which exhibit brittle deformation at low hydrostatic pressure and ductile deformation at high hydrostatic pressure. The results are compared to those of continuum damage mechanics model. Plasticity model shows good agreement with damage model and experimental results for high confining pressures even at high strain-rates which is usually considered as a brittle condition under uniaxial compression.

  • PDF

An Application of Plasticity Model for Ice Deformation Characteristics (수변형 특성에 있어서 소성 모델의 응용)

  • Choe, Gyeong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.165-165
    • /
    • 1990
  • This study focuses the mechanical deformation response predicted by the plasticity model for polycrystalline ice. To describe various deformation characteristics, ice is idealized as a perfectly plastic material using an asymptotic exponential failure criterion. This criterion is suite for describing materials which exhibit brittle deformation at low hydrostatic pressure and ductile deformation at high hydrostatic pressure. The results are compared to those of continuum damage mechanics model. Plasticity model shows good agreement with damage model and experimental results for high confining pressures even at high strain-rates which is usually considered as a brittle condition under uniaxial compression.

Precipitation and Recrystallization of V-Microalloyed Steel during Hot Deformation (V 첨가강의 고온변형시 석출 및 재결정에 관한 연구)

  • 조상현;김성일;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.48-54
    • /
    • 1996
  • The continuous deformation , multistage deformation and stress relaxation were carried out to investigate the strain induced procipitation by torsion tests in the range of 1000∼800$^{\circ}C$, 0.05/sec∼5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests and the distribution of percipitates increased at higher strain rate and the mean size of precipitates was found to be about 50nm. The precipitation starting time decreased with increasing strain rate from 0.05/sec to 5 /sec and pre-strain. The effect of deformation conditions on the no-recrystallization temperature(Tnr) was determined in the multistage deformation with declining temerature. The Tnr decreased with increasing strain and strain rae. In the controlled rolling, grain refinement and precpitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

Reaction force of ship stern bearing in hull large deformation based on stochastic theory

  • Zhang, Sheng-dong;Long, Zhi-lin;Yang, Xiu-ying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.723-732
    • /
    • 2020
  • A theoretical calculation model for ship stern bearings with large hull deformation is established and validated theoretically and experimentally. A hull simulation model is established to calculate hull deformations corresponding to the reaction force of stern bearings under multi-factor and multi-operating conditions. The results show that in the condition of wave load, hull deformation shows randomness; the aft stern tube bearing load obeys the Gaussian distribution and its value increases significantly compared with the load under static, and the probability of aft stern tube bearing load greater than 1 is 65.7%. The influence laws and levels between hull deformation and bearing reaction force are revealed, and suggestions for ship stern bearing specifications are proffered accordingly.

Effect of plastic deformation on the martensitic transformations in TiNi alloy

  • Belyaev, Fedor S.;Evard, Margarita E.;Volkov, Aleksandr E.
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.311-319
    • /
    • 2022
  • A model of plastic deformation of the shape memory alloys which describes dislocation slip at the microlevel is developed. A condition similar to the Schmid law was adopted for the determination of dislocation slip onset. A description of the interaction of plastic deformation and martensitic transformations by taking into account the densities of deformation defects is proposed. It is shown that the model can correctly describe the effect of plastic strain on the shape memory effect. The proposed model is also capable of describing the two-way shape memory effect.