• 제목/요약/키워드: deformation condition

검색결과 1,367건 처리시간 0.024초

Created cavity expansion solution in anisotropic and drained condition based on Cam-Clay model

  • Li, Chao;Zoua, Jin-Feng
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.141-151
    • /
    • 2019
  • A novel theoretical solution is presented for created (zero initial radius) cavity expansion problem based on CamClay model and considers the effect of initial anisotropic in-situ stress and drained conditions. Here the strain of this theoretical solution is small deformation in elastic region and large deformation in plastic region. The works for cylindrical and spherical cavities expanding in drained condition from zero initial radius are investigated. Most of the conventional solutions were based on the isotropic and undrained condition, however, the initial stress state of natural soil mass is anisotropy by soil deposition history, and drained cavity expansion calculation is closer to actual engineering in permeable soil mass. Finally, the parametric study is presented in order to the engineering significance of this work.

전자레인지 포장품의 클램핑 해석 및 설계 (Clamping Analysis and Design of a Package of a Microwave Oven)

  • 이부윤;손병삼
    • 한국정밀공학회지
    • /
    • 제26권3호
    • /
    • pp.113-121
    • /
    • 2009
  • Behavior of a package of a microwave oven under the clamping condition is evaluated by tests and the finite element analyses. PAM-CRASH software is used for the finite element analyses. Results of the analyses are compared with those of the tests and accuracy is shown to be favorable. Under the clamping condition of the original design, severe deformation occurs and an improved design of the outer case and upper EPS(Expandable Poly Styrene) is proposed to reduce it. Face beads of the outer case are introduced and shape of the upper EPS is modified to reduce the deformation resulting from the clamping load. The improved design model is analyzed and its deformation is shown to be satisfactory. A prototype is produced according to the improved design and tests are performed. Results of the clamping test of the prototype show that the plastic deformation is removed totally.

호몰로지 제한조건을 이용한 다중하중하의 트러스 최적설계 (Truss Ooptimization Using Homology Constraints under Multiple Loadings)

  • 이권희;김경근;박경진
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2800-2811
    • /
    • 1996
  • The deformation of a structure shall be called homologous, if a given geometrical relation holds, for a given number of structural points, before, during, and after the deformation. Some researchers have utilized the idea on structural design with finite element method. The approaches use the decomposition of the FEM equation or equality of eqality equations to obtain homologous deformation. However, weight reduction and response constraints such as stress, displacement or natural frequency cannot be considered by those theories. An optimization method solving the above problems is suggested to gain homologous deformation. Homology constraints can be considered under multiple loadindg conditions as well as a single loading condition. Homology index is defined for the multiple loading conditions Examples are solved to present the performances of the method.

  • PDF

카테터의 거동을 시뮬레이션 하기 위한 고정된 길이를 유지하는 실 형상의 변형체 모델 (An Inextensible Wire-shaped Deformation Model for Catheter Simulation)

  • 한혜현;이두용
    • 제어로봇시스템학회논문지
    • /
    • 제22권8호
    • /
    • pp.610-614
    • /
    • 2016
  • This paper proposes an inextensible wire-shaped deformation model to simulate catheter behavior. The wire-shaped model consists of serially-connected mass points and massless rigid links. Torsional springs and dampers are employed to accommodate bending. Deformation is computed by updating the rotation angles from the global coordinates while maintaining the fixed length condition. Equations of motion is derived from double pendulum motion. Spring constant is computed using strain energy and potential energy stored in a torsional spring to reflect material property. Simulation is conducted to show deformation of wire model while maintaining inextensibility condition and including material properties. The proposed method guarantees inextensible constraint in the catheter simulation.

알루미늄 합금(Al7075-T651)의 얇은 벽 고속밀링 가공 시 가공표면 상태와 가공변형 특성 (Investigation of Machined-Surface Condition and Machining Deformation in High-Speed Milling of Thin-Wall Aluminum 7075-T651)

  • 구준영;황문창;이종환;김정석
    • 한국생산제조학회지
    • /
    • 제25권3호
    • /
    • pp.211-216
    • /
    • 2016
  • Al alloys are useful materials having high specific strength and are used in machining of parts having thin-walled structures for weight reduction in aircraft, automobiles, and portable devices. In machining of thin-walled structures, it is difficult to maintain dimensional accuracy because machining deformation occurs because of cutting forces and heat in the cutting zone. Thus, cutting conditions and methods need to be investigated and cutting signals need to be analyzed to diagnose and minimize machining deformation and thereby enhance machining quality. In this study, an investigation on cutting conditions to minimize machining deformation and an analysis on characteristics of cutting signals when machining deformation occurs are conducted. Cutting signals for the process are acquired by using an accelerometer and acoustic emission (AE) sensor. Signal characteristics according to the cutting conditions and the relation between machining deformation and cutting signals are analyzed.

유압 베인 펌프의 캠 링 변형에 관한 연구 (A Study on the Cam Ring Deformation in a Balanced Type Vane Pump)

  • 한동철;조명래;양광식;박제승
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.206-211
    • /
    • 1998
  • This paper presents the deformation characteristics of cam ring in a balanced type vane pump. Cam ring is operated in the condition of high pressure. Therefore the local deformation of cam ring affects the characteristics of compression, vane motion and noise and vibration. We analyzed the deformation of cam ring in three types by using the finite element method. As results of analysis, deformed shape of cam ring and the effects of deformation on the compression are presented.

  • PDF

3차원 충돌해석 정보를 이용한 측면 충돌 사고 재구성 (A Study on the Side Collision Accident Reconstruction Using 3-Dimensional Crash Analysis)

  • 장인식;김일동
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.52-63
    • /
    • 2008
  • The side collision reconstruction algorithm is developed using three dimensional car crash analysis. Medium size passenger car is modeled for finite element analysis. Total 24 side collision configurations, four different speed and six different angle, are set up for making side collision database. Deformation index and degree index are built up for each collision case. Deformation index is a kind of deformation estimate averaging displacement of side door of crashed car from finite element analysis result. Angle index is constructed measuring deformed angle of crashing car. There are two kinds of angle index, one is measured at driver's side and the other is measured at passenger's side. Also a collision analysis information in side of cars is used for giving a basis for scientific and practical reason in a reconstruction of the car accident. The analysis program, LS-DYNA3D is utilized for finite element analysis program for a collision analysis. Those database are used for side collision reconstruction. Side collision reconstruction algorithm is developed, and applied to find the collision conditions before the accident occurs. Three example collision cases are tried to check the effectiveness of the algorithm. Deformation index and angle index is extracted for the case from the analysis result. Deformation index is compared to the established database, and estimated collision speed and angle are introduced by interpolation function. Angle index is used to select a specific collision condition from the several available conditions. The collision condition found by reconstruction algorithm shows good match with original condition within 10% error for speed and angle. As a result, the calculation from the reconstruction of the situation is reproducing the situation well. The performance in this study can be used in many ways for practical field using deformation index and degree index. Other different collision situations may be set up for extending the scope of this study in the future.

7050 AI 합금의 가공열처리가 미세조직변화와 피로성질에 미치는 영향 (The Effect of Thermomechanical Treatment on the Microstructural Changes and Fatigue Properties in 7050 Al Alloy)

  • 김문호;권숙인
    • 열처리공학회지
    • /
    • 제4권4호
    • /
    • pp.24-33
    • /
    • 1991
  • The effects of thermomechanical treatments on microstructure and fatigue properties of 7050 Al alloy were investigated. The precipitation kinetics changed to a faster rate due to cold deformation employed in this special TAHA thermomechanical treatments including pre-aging, plastic deformation and two step final-aging. The G.P. zones in the under-aged condition were cut by dislocations and dissolved during the plastic deformation. During the low cycle fatigue, the T6' condition showed cyclic hardening behavior whereas the TMT5, TMT27 and T76 conditions showed cyclic softening at above 0.7% total strain amplitudes. The ${\Delta}K_{th}$ value of TMT27 was improved more than two times, compared with that of T76 condition. The T6' with small shearable precipitates resulted in the markedly high ${\Delta}K_{th}$ value. This is thought to be resulted from dislocation reversibility and roughness-induced crack closure due to planarity of slip.

  • PDF

보스-리브 시험 시 펀치 형상 및 마찰 조건에 따른 변형 양상에 대한 연구 (Effect of Punch Design and Friction Condition on Deformation Pattern in Boss and Rib Test)

  • 윤여웅;강성훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.332-337
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitative evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and friction condition on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the heights of the boss and rib. In addition, the effect of flow stress was also investigated on the deformation patterns through FE simulations.

  • PDF

Condition assessment of steel shear walls with tapered links under various loadings

  • He, Liusheng;Kurata, Masahiro;Nakashima, Masayoshi
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.767-788
    • /
    • 2015
  • A steel shear wall with double-tapered links and in-plane reference was developed for assisting the assessment of the structural condition of a building after an earthquake while maintaining the original role of the wall as a passive damper device. The double-tapered link subjected to in-plane shear deformation is designed to deform torsionally after the onset of local buckling and works as an indicator of the maximum shear deformation sustained by the shear wall during an earthquake. This paper first examines the effectiveness of double-tapered links in the assessment of the structural condition under various types of loading. A design procedure using a baseline incremental two-cycle loading protocol is verified numerically and experimentally. Meanwhile, in-plane reference links are introduced to double-tapered links and greatly enhance objectivity in the inspection of notable torsional deformation with the naked eye. Finally, a double-layer system, which consists of a layer with double-tapered links and a layer with rectangular links made of low-yield-point steel, is tested to demonstrate the feasibility of realizing both structural condition assessment and enhanced energy dissipation.