• Title/Summary/Keyword: deformation behaviour

Search Result 415, Processing Time 0.029 seconds

Eccentrically compressive behaviour of RC square short columns reinforced with a new composite method

  • Zhang, Fan;Lu, Yiyan;Li, Shan;Zhang, Wenlong
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.95-108
    • /
    • 2018
  • A new composite reinforced method, namely self-compacting concrete filled circular CFRP-steel jacketing, was proposed in this paper. Experimental tests on eight RC square short columns reinforced with the new composite reinforced method and four RC square short columns reinforced with CFS jackets were conducted to investigate their eccentrically compressive behaviour. Nine reinforced columns were subjected to eccentrically compressive loading, while three reinforced columns were subjected to axial compressive loading as reference. The parameters investigated herein were the eccentricity of the compressive loading and the layer of CFRP. Subsequently, the failure mode, ultimate load, deformation and strain of these reinforced columns were discussed. Their failure modes included the excessive bending deformation, serious buckling of steel jackets, crush of concrete and fracture of CFRP. Moreover, these reinforced columns exhibited a ductile failure globally. Both the eccentricity of the compressive loading and the layer of CFRP had a significant effect on the eccentrically compressive behaviour of reinforced columns. Finally, formulae for the evaluation of the ultimate load of reinforced columns were proposed. The theoretical formulae based on the ultimate equilibrium theory provided an effective, acceptable and safe method for designers to calculate the ultimate load of reinforced columns under eccentrically compressive loading.

Instrumentations for the Behaviour Observation of the Geotextile on Marine Clayey Grounds (해성점토지반에 설치된 지오텍스타일의 거동 관측을 위한 계측)

  • 조성민;장용채
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.463-473
    • /
    • 2000
  • Reinforcement with geotextiles have been used in the foundation soil to enhance the resistance of embankments to avoid failure through excessive deformation or shear in the foundation. It is improtant to know the amount of the strain and the displacement of buried geotextiles for the verification of the reinforcement behaviour. Full scale trial constructions were performed to check the deformational characteristics of the polyester(PET) mat which was used for the embankment reinforcement. Many instrumentation equipments including surface settlement plates, profile gauges and inclinometer casings were installed to observe the behaviour of the soft ground due to the soil embankment. 60 electrical resistance strain gauges and 9 vibrating wire LVDTs were installed 세 measure the deformation of the polyester mat. Results of various tests and geotextile, waterproofing and protection from the hazard environments were introduced. The proposed instrumentation method was effective for the monitoring or the geotextile behaviour. The direct attachment of electrical resistance strain gauges on the gertextile mat was able to measure small changes of the strain of geotextiles. At the end of the 5 month monitoring, 54 of 60 (93%) strain gauges and 7 of 9 (78%) displacement transducers survived all perils of the compaction impacts and the humidity. And the tensile strain of grotextiles increased as the ground displacement became larger. Though the observed strain of mats under the 3m high embankment load was less than 1%, the magnitudes of the strain according to the mat spreading method were different from each other.

  • PDF

Time-dependent Deformation Behaviour of Queenston Shale (퀸스톤 제일의 시간의존적 변형거동)

  • 이영남
    • Geotechnical Engineering
    • /
    • v.5 no.2
    • /
    • pp.57-77
    • /
    • 1989
  • This paper describes the design and construction aspects of time-dependent deformation test apparatus for slut.oiling rocks and presents the test results obtained using these apparatus. These tests are modified semi-confined swell test, swell test under uniaxial tension and swell test under biaxial stress. These apparatus measure the time.dependent deformations in three orthogonal directions of the test specimen under simplified field stress conditions. The test results obtained from these test apparatus for the last several years show that these apparatus have performed satisfactorily. The test results show that the time-dependent deformation behaviour of the Queenston shale is cross-anisotropic with higher swelling in the vertical direction (normal to bedding plane) than in horizontal direction (parallel to bedding plane) under free swell condition. The applied stress in one direction suppresses the swelling deformation in that direction as well as that in the orthogonal directions.

  • PDF

Plastic Behaviour of Green Powder Metallurgical Compacts

  • Prado, J. M.;Riera, M. D.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.177-178
    • /
    • 2006
  • The results of monotonic and cyclic uniaxial compression tests, in which the deviatoric component of the stress is predominant, carried out on green and recrystallized iron compacts with different levels of density are presented and discussed in order to analyse the macro and micro-mechanisms governing the mechanical behaviour of non-sintered PM materials. The plastic deformation of the particles, especially at the contact areas between neighbouring grains, produces an internal friction responsible for the main features observed in the behaviour of green metallic compacts. These results show important discrepancies with the plasticity models, Cam-Clay and Drucker-Prager Cap.

  • PDF

Bending behaviour of FGM plates via a simple quasi-3D and 2D shear deformation theories

  • Youcef, Ali;Bourada, Mohamed;Draiche, Kada;Boucham, Belhadj;Bourada, Fouad;Addou, Farouk Yahia
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.237-264
    • /
    • 2020
  • This article investigates the static behaviour of functionally graded (FG) plates sometimes declared as advanced composite plates by using a simple and accurate quasi-3D and 2D hyperbolic higher-order shear deformation theories. The properties of functionally graded materials (FGMs) are assumed to vary continuously through the thickness direction according to exponential law distribution (E-FGM). The kinematics of the present theories is modeled with an undetermined integral component and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate; therefore, it does not require the shear correction factor. The fundamental governing differential equations and boundary conditions of exponentially graded plates are derived by employing the static version of principle of virtual work. Analytical solutions for bending of EG plates subjected to sinusoidal distributed load are obtained for simply supported boundary conditions using Navier'is solution procedure developed in the double Fourier trigonometric series. The results for the displacements and stresses of geometrically different EG plates are presented and compared with 3D exact solution and with other quasi-3D and 2D higher-order shear deformation theories to verify the accuracy of the present theory.

Bolted T-stubs: A refined model for flange and bolt fracture modes

  • Francavilla, Antonella B.;Latour, Massimo;Piluso, Vincenzo;Rizzano, Gianvittorio
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.267-293
    • /
    • 2016
  • It is well known that, in order to accurately predict the behaviour of steel structures a requirement the definition of the mechanical behaviour of beam-to column joints is of primary importance. This goal can be achieved by means of the so-called component method, which, in order to obtain the whole behaviour of connections, provides to break up joints in basic components of deformability and resistance. One of the main joint components used to model bolted connections is the so-called equivalent T-stub in tension, which is normally used to predict the behaviour of bolted plates in bending starting from the behaviour of the single bolt rows. In past decades, significant research efforts have been devoted to the prediction of the behaviour of bolted T-stubs but, to date, no particular attention has been devoted to the characterization of their plastic deformation capacity. To this scope, the work presented in this paper, taking into account the existing technical literature, proposes a new theoretical model for predicting the whole behaviour up to failure of bolted T-stubs under monotonic loading conditions, including some complexities, such as the bolt/plate compatibility requirement and the bolt fracture, which are necessary to accurately evaluate the ultimate displacement. After presenting the advances of the proposed approach, a comparison between theoretical and experimental results is provided in order to verify its accuracy.

A Study on Distinct Element Modelling of Dilatant Rock Joints (팽창성 암석절리의 개별요소 모델링에 관한 연구)

  • 장석부;문현구
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • The behavior of a jointed rock mass depends mainly on the geometrical and mechanical properties of joints. The failure mode of a rock mass and kinematics of rock blocks are governed by the orientation, spacing, and persistence of joints. The mechanical properties such as dilation angle, shear strength, maximum closure, strength of asperities and friction coeffiient play important roles on the stability and deformation of the rock mass. The normal and shear behaviour of a joint are coupled due to dilation, and the joint deformation depends also on the boundary conditions such as stiffness conditons. In this paper, the joint constitutive law including the dilatant behaviour of a joint is numerically modelled using the edge-to-edge contact logic in distinct element method. Also, presented is the method to quantify the input parameters used in the joint law. The results from uniaxial compression and direct shear tests using the numeical model of the single joint were compared to the analytic results from them. The boundary effect on the behaviour of a joint is verified by comparing the results of direct shear test under constant stress boundary condition with those under constant stiffness boundary condition. The numerical model developed is applied to a complex jointed rock mass to examine its performance and to evaluate the effect of joint dilation on tunnel stability.

  • PDF

Flexural ductility of reinforced and prestressed concrete sections with corrugated steel webs

  • Chen, X.C.;Au, F.T.K.;Bai, Z.Z.;Li, Z.H.;Jiang, R.J.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.625-642
    • /
    • 2015
  • Prestressed concrete bridges with corrugated steel webs have emerged as one of the promising bridge forms. This structural form provides excellent structural efficiency with the concrete flanges primarily taking bending and the corrugated steel webs primarily taking shear. In the design of this type of bridges, the flexural ductility and deformability as well as strength need to be carefully examined. Evaluation of these safety-related attributes requires the estimation of full-range behaviour. In this study, the full-range behaviour of beam sections with corrugated steel webs is evaluated by means of a nonlinear analytical method which uses the actual stress-strain curves of the materials and considers the path-dependence of materials. In view of the different behaviour of components and the large shear deformation of corrugated steel webs with negligible longitudinal stiffness, the assumption that plane sections remain plane may no longer be valid. The interaction between shear deformation and local bending of flanges may cause additional stress in flanges, which is considered in this study. The numerical results obtained are compared with experimental results for verification. A parametric study is undertaken to clarify the effects of various parameters on ductility, deformability and strength.

Seismic fragility analysis of wood frame building in hilly region

  • Ghosh, Swarup;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.97-107
    • /
    • 2021
  • A comprehensive study on seismic performance of wood frame building in hilly regions is presented. Specifically, seismic fragility assessment of a typical wood frame building at various locations of the northeast region of India are demonstrated. A three-dimensional simplified model of the wood frame building is developed with due consideration to nonlinear behaviour of shear walls under lateral loads. In doing so, a trilinear model having improved capability to capture the force-deformation behaviour of shear walls including the strength degradation at higher deformations is proposed. The improved capability of the proposed model to capture the force-deformation behaviour of shear wall is validated by comparing with the existing experimental results. The structural demand values are obtained from nonlinear time history analysis (NLTHA) of the three-dimensional wood frame model considering the effect of uncertainty due to record to record variation of ground motions and structural parameters as well. The ground motion bins necessary for NLTHA are prepared based on the identified hazard level from probabilistic seismic hazard analysis of the considered locations. The maximum likelihood estimates of the lognormal fragility parameters are obtained from the observed failure cases and the seismic fragilities corresponding to different locations are estimated accordingly. The results of the numerical study show that the wood frame constructions commonly found in the region are likely to suffer minor cracking or damage in the shear walls under the earthquake occurrence corresponding to the estimated seismic hazard level; however, poses negligible risk against complete collapse of such structures.