• Title/Summary/Keyword: deformation behaviour

Search Result 420, Processing Time 0.025 seconds

A Experimental Study on the Stability Management Method using change of Inclination for Embankment on Soft Clay (연약지반 성토시의 기울기변화를 이용한 안정관리기법에 관한 실험적 연구)

  • Ryu, Ji-Hoon;Im, Jong-Chul;Chang, Ji-Keon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.898-905
    • /
    • 2005
  • The settlement of embankment on soft clay includes shear settlement due to shear deformation. Even though the consolidation settlement is not related to lateral displacement, but shear settlement makes the embankment unstable because it deforms ground and decreases the ground strength. In order to determine the shear deformation behaviour during embankment construction, 3 cases (1B, 2B, and 3B) of rapid undrained loading tests on soft clays were performed. Shear settlement is consist of elastic settlement, plastic settlement and viscous settlement. Elastic settlement isn't considered because the range is small, therefore the first is the range of plastic displacement, and the second is that of viscous displacement in the displacement-time curve for each loading stage. After determining that the change in the inclination of the viscous displacement range is larger than in the plastic displacement range after the ground failure occurs for the loading stage, the stability management methods were suggested considering that it is hard to divide the plastic displacement range and the viscous displacement range. The stability management method was based on the ratio of the plastic displacement range's inclination and the viscous displacement range's inclination. A stability management method based on the ratio of the total inclination for each loading stage compared to the whole inclination in the initial loading stage was also recommended.

  • PDF

Higher-order Shear Deformable Analysis of Laminated Plates on Two-parameter Elastic Foundations (Two-parameter 탄성지반위에 놓인 고차전단변형 적층판의 해석)

  • Han, Sung-Cheon;Jang, Suk-Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.101-113
    • /
    • 2001
  • The main purpose of this paper is to present deflections of laminated composite plates on the two-parameter foundations. that is an elastic foundation with shear layer. This paper focuses on the deformation behaviour of anisotropic structures on elastic foundations. The third-order shear deformation theory is applied by using the double-fourier series. To validate the derived equations the obtained displacements for simply supported isotropic and orthotropic plates on elastic foundations are compared with those of Timoshenko and LUSAS program. The results show an excellent agreement for the isotropic and LUSAS program. The results show an excellent agreement for the isotropic and orthotropic plates on the elastic foundations. Numerical results for displacements are presented to show the effects of side-to-thickness ratio aspect ratio, material anisotropy and shear modulus of foundations.

  • PDF

A Study on Field and Laboratory Test Methods to Obtain Non-linear Deformation Characteristics of Soft Rocks (퇴적연암의 비선형특성 조사.시험기법에 관한 연구)

  • 김유성
    • Geotechnical Engineering
    • /
    • v.12 no.5
    • /
    • pp.63-78
    • /
    • 1996
  • Various type of in-situ and laboratary tests were performed in order to evaluate the stiffness of sedimentary soft rock. In triaxial compression tests of sedimentary soft rocks, axial strains from the axial displacement of the loading piston or specimen cap conventionally were considerably larger than those measured. tocally on the lateral surfaces of specimen, due to the bedding errors at the top and bottom ends of a specimen. A local deformation transducer was used to measure axial strains free from the bedding error ranging from 0.001% to about 1%. In ultra-sonic wave tests, the elastic modulus of unconfined spec imens was smaller than that of confined specimens, due probably to microfracks. Young's modulus Ed from ultra-sonic wave tests and those at small local strains from triaxial tests were similar, both of which agreed very well with Young's modulus Er from field shear wave velocities. Young'a modulus from the field behaviour was virtually similar to that obtained by reducing Er based on the strain level-dependency of stiffness evaluated by the triaxial tests.

  • PDF

Mechanical behaviour analysis of FGM plates on elastic foundation using a new exponential-trigonometric HSDT

  • Fatima Z. Zaoui;Djamel Ouinas;Abdelouahed Tounsi;Belkacem Achour;Jaime A. Vina Olay;Tayyab A. Butt
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.551-568
    • /
    • 2023
  • In this research, a new two-dimensional (2D) and quasi three-dimensional (quasi-3D) higher order shear deformation theory is devised to address the bending problem of functionally graded plates resting on an elastic foundation. The displacement field of the suggested theories takes into account a parabolic transverse shear deformation shape function and satisfies shear stress free boundary conditions on the plate surfaces. It is expressed as a combination of trigonometric and exponential shear shape functions. The Pasternak mathematical model is considered for the elastic foundation. The material properties vary constantly across the FG plate thickness using different distributions as power-law, exponential and Mori-Tanaka model. By using the virtual works principle and Navier's technique, the governing equations of FG plates exposed to sinusoidal and evenly distributed loads are developed. The effects of material composition, geometrical parameters, stretching effect and foundation parameters on deflection, axial displacements and stresses are discussed in detail in this work. The obtained results are compared with those reported in earlier works to show the precision and simplicity of the current formulations. A very good agreement is found between the predicted results and the available solutions of other higher order theories. Future mechanical analyses of three-dimensionally FG plate structures can use the study's findings as benchmarks.

Assessment of long-term behaviour of a shallow tunnel in clay till

  • Wang, Z.;Wong, R.C.K.;Heinz, H.
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.107-123
    • /
    • 2010
  • Ground settlements and pore pressure changes were monitored around a shallow tunnel constructed in clay till during the excavation and primary lining installation. The settlements above the tunnel continued to develop for up to 100 days after the primary lining installation. Triaxial compression tests were carried out to estimate the short-term and long-term deformation characteristics of the till. Numerical simulation was conducted to history match the field measurements, and thus, to quantify the settlements induced by ground stress relief, consolidation and creep. It was found that the surface settlements due to ground stress relief, consolidation and creep are 17, 12 and 71% of total settlement (about 44 mm), respectively. In addition, early installation of rigid concrete lining could be an effective means to reduce the settlement due to creep.

Braided composite rods: Innovative fibrous materials for geotechnical applications

  • Fangueiro, Raul;Rana, Sohel;Gomes Correia, A.
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • In this paper, a novel fibrous material known as axially reinforced braided composite rods (BCRs) have been developed for reinforcement of soils. These innovative materials consist of an axial reinforcement system, comprised of longitudinally oriented core fibres, which is responsible for mechanical performance and, a braided cover, which gives a ribbed surface texture for better interfacial interactions with soils. BCRs were produced using both thermosetting (unsaturated polyester) and thermoplastic (polypropylene) matrices and synthetic (carbon, glass, HT polyethylene), as well as natural (sisal) core fibres. BCRs were characterized for tensile properties and the influence of core fibres was studied. Moreover, BCRs containing carbon fibre in the core composition were characterized for piezoresistivity and strain sensing properties under flexural deformation. According to the experimental results, the developed braided composites showed tailorable and wide range of mechanical properties, depending on the core fibres and exhibited very good strain sensing behavior.

Deformation characteristics of brick masonry due to partial unloading

  • Alshebani, Milad M.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.565-574
    • /
    • 2001
  • Experimental investigation into the behaviour of half-scale brick masonry panels were conducted under cyclic loading normal to the bed joint and parallel to the bed joint. For each cycle, full reloading was performed with the cycle peaks coinciding approximately with the envelope curve. Unloading, however, was carried out fully to zero stress level and partially to two different stress levels of 25 percent and 50 percent of peak stress. Stability point limit exhibits a unique stress-strain curve for full unloading but it could not be established for partial unloading. Common point limit was established for all unloading-reloading patterns considered, but its location depends on the stress level at which unloading is carried to. Common point curves were found to follow an exponential formula, while residual strains versus envelope strains can be expressed by a polynomial function of a single term. The relation between residual strain and envelope strain can be used to determine the stress level at which deterioration due to cyclic loading began.

Modelling of recycled aggregate concrete-filled steel tube (RACFST) beam-columns subjected to cyclic loading

  • Yang, You-Fu
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.213-233
    • /
    • 2015
  • A nonlinear finite element analysis (FEA) model is presented for simulating the behaviour of recycled aggregate concrete-filled steel tube (RACFST) beam-columns subjected to constant axial compressive load and cyclically increasing flexural loading. The FEA model was developed based on ABAQUS software package and a displacement-based approach was used. The proposed engineering stress versus engineering strain relationship of core concrete with the effect of recycled coarse aggregate (RCA) replacement ratio was adopted in the FEA model. The predicted results of the FEA model were compared with the experimental results of several RACFST as well as the corresponding concrete-filled steel tube (CFST) beam-columns under cyclic loading reported in the literature. The comparison results indicated that the proposed FEA model was capable of predicting the load versus deformation relationship, lateral bearing capacity and failure pattern of RACFST beam-columns with an acceptable accuracy. A parametric study was further carried out to investigate the effect of typical parameters on the mechanism of RACFST beam-columns subjected to cyclic loading.

A Study of Developing Stamping Die by Using One-Step Form Method in Auto-Body Panel Stamping Process (차체 판넬 스템핑 공정에서 One-step Form 해석방법을 이용한 금형개발에 관한 연구)

  • Hwang Jae Sin;Jung Dong Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.350-359
    • /
    • 2005
  • Finite element method is a very effective method to simulate the forming processes with good prediction of the deformation behaviour. For the finite element modeling of sheet mental forming the accurate die model is required. Among finite element method, the static-implicit finite element method is applied effectively to analyze real-size auto-body panel stamping processes, which include the forming stage. This study is about analyzing the stamping process problems by using AutoForm commercial software which used static-implicit method. According to this study, the results of simulation will give engineers good information to access the die design of optimization.

Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers

  • Singh, Vijay K.;Panda, Subrata K.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.853-872
    • /
    • 2015
  • Numerical analysis of large amplitude free vibration behaviour of laminated composite spherical shell panel embedded with the piezoelectric layer is presented in this article. For the investigation purpose, a general nonlinear mathematical model has been developed using higher order shear deformation mid-plane kinematics and Green-Lagrange nonlinearity. In addition, all the nonlinear higher order terms are included in the present mathematical model to achieve any general case. The nonlinear governing equation of freely vibrated shell panel is obtained using Hamilton's principle and discretised using isoparametric finite element steps. The desired nonlinear solutions are computed numerically through a direct iterative method. The validity of present nonlinear model has been checked by comparing the responses to those available published literature. In order to examine the efficacy and applicability of the present developed model, few numerical examples are solved for different geometrical parameters (fibre orientation, thickness ratio, aspect ratio, curvature ratio, support conditions and amplitude ratio) with and/or without piezo embedded layers and discussed in details.