• Title/Summary/Keyword: deformation behavior stability

Search Result 237, Processing Time 0.026 seconds

Experimental study on the ground subsidence due to the excavation of a shallow tunnel (경사지반에서 얕은터널의 굴착에 따른 지표침하에 대한 실험적 연구)

  • Park, Chan Hyuk;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.761-778
    • /
    • 2017
  • The need of the underground space for the infrastructures in urban area is increasing, and especially the demand for shallow tunnels increased drastically. It is very important that the shallow tunnel in the urban area should fulfill not only its own safety conditions but also the safety condition for the adjacent structures and the surrounding sub-structure. Most of the studies on the behavior of shallow tunnels concentrated only on their behaviors due to the local deformation of the tunnel, such as tunnel crown or tunnel sidewall. However, few studies have been performed for the behavior of the shallow tunnel due to the deformation of the entire tunnel. Therefore, in this study the behavior of the surrounding ground and the stability caused by deformation of the whole tunnel were studied. For that purpose, model tests were performed for the various ground surface slopes and the cover depth of the tunnel. The model tunnel (width 300 mm, height 200 mm) could be simulationally deformed in the vertical and horizontal direction. The model ground was built by using carbon rods of three types (4 mm, 6 mm, 8 mm), in various surface slopes and cover depth of the tunnel. The subsidence of ground surface, the load on the tunnel crown and the sidewall, and the transferred load near tunnel were measured. As results, the ground surface subsided above the tunnel, and its amount decreased as the distance from the tunnel increased. The influence of a tunnel ceased in a certain distance from the tunnel. At the inclined ground surface, the wider subsidence has been occurred. The loads on the crown and the sidewall were clearly visible, but there was no effect of the surface slope at a certain depth. The load transfer on the adjacent ground was larger when the cover depth (on the horizontal surface) was lager. The higher the level (on the inclined surface), the wider and smaller it appeared. On the shallow tunnel under inclined surface, the transfer of the ambient load on the tunnel sidewall (low side) was clearly visible.

Coupled Finite Element Analysis of Partially Saturated Soil Slope Stability (유한요소 연계해석을 이용한 불포화 토사사면 안전성 평가)

  • Kim, Jae-Hong;Lim, Jae-Seong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.35-45
    • /
    • 2014
  • Limit equilibrium methods of slope stability analysis have been widely adopted mainly due to their simplicity and applicability. However, the conventional methods may not give reliable and convincing results for various geological conditions such as nonhomogeneous and anisotropic soils. Also, they do not take into account soil slope history nor the initial state of stress, for example excavation or fill placement. In contrast to the limit equilibrium analysis, the analysis of deformation and stress distribution by finite element method can deal with the complex loading sequence and the growth of inelastic zone with time. This paper proposes a technique to determine the critical slip surface as well as to calculate the factor of safety for shallow failure on partially saturated soil slope. Based on the effective stress field in finite element analysis, all stresses are estimated at each Gaussian point of elements. The search strategy for a noncircular critical slip surface along weak points is appropriate for rainfall-induced shallow slope failure. The change of unit weight by seepage force has an effect on the horizontal and vertical displacements on the soil slope. The Drucker-Prager failure criterion was adopted for stress-strain relation to calculate coupling hydraulic and mechanical behavior of the partially saturated soil slope.

The Behavior of Stabilizing Piles installed in a Large-Scale Cut Slope (대규모 절개사면에 설치된 억지말뚝의 거동)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.191-203
    • /
    • 2009
  • The effect of stabilizing piles on cut slopes is checked and the behavior of slope soil and piles are observed throughout the year by field measurements on the large-scale cut slopes. First of all, the behavior of the slope soil was measured by inclinometers during slope modification. Landslides occurred in this area due to the soil cutting for slope modification. The horizontal deformations of slope soil are gradually increased and rapidly decreased at depth of sliding surface. As the result of measuring deformation, the depth of sliding surface below the ground surface can be known. Based on the measuring the depth of the sliding surface, some earth retention system including stabilizing piles were designed and constructed in this slope. To check the stability of the reinforced slope using stabilizing piles, an instrumentation system was installed. As the result of instrumentation, the maximum deflection of piles is measured at the pile head. It is noted that the piles deform like deflection on a cantilever beam. The maximum bending stress of piles is measured at the soil layer. The pile above the soil layer is subjected to lateral earth pressure due to driving force of the slope, while pile below soil layer is subjected to subgrade reaction against pile deflection. The deflection of piles is increased during cutting slope in front of piles for the construction of soil nailing. As a result of research, the effect and applicability of stabilizing piles in large-scale cut slopes could be confirmed sufficiently.

Behavior Characteristics of Composite Reinforced Earth with Improved Soil Surface and Geogrid-reinforced Backfill (지반개량재 전면토체와 지오그리드 보강 배면토체로 형성된 복합보강토의 거동특성)

  • Bhang, In-Hwang;Kim, Tae-Heon;Kim, You-Seong;Kim, Jae-Hong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.27-34
    • /
    • 2016
  • Many steepened slopes have become increasingly advantageous because of the desire to increase land usage and decrease site development costs. The proven concept of tensile reinforcement allows construction of slopes with far steeper face angles than the soils natural angle. Steepened slope face reinforced with improved soil can increase land usage substantially while providing a natural appearance. The paper presents composite reinforced earth with improved soil surface and geogrid-reinforced backfill. For the stability of the steepened slope, the behavior of the composite reinforced earth are validated and verified by case study and numerical analysis. The case study has performed to investigate the deformation of reinforce soil slope for 14 months. Its horizontal behavior by general vertical load shows within the safe range (0.5% of structure height). As a result of numerical analysis and case study, the reinforcement effect of the steepened slope technique using improved soil is sufficient to be constructed as reinforced soil slope.

P-y Curves from Large Displacement Borehole Testmeter for Railway Bridge Foundation (장변위공내재하시험기를 이용한 철도교 기초의 P-y곡선에 관한 연구)

  • Ryu, Chang-Youl;Lee, Seul;Kim, Dae-Sang;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.836-842
    • /
    • 2011
  • The lateral stability of bridge foundations against train moving load, emergency stopping load, earthquakes, and so on is very important for a railway bridge foundation. A borehole test is much more accurate than laboratory tests since it is possible to minimize the disturbance of ground conditions on the test site. The representative borehole test methods are Dilatometer, Pressuremeter and Lateral Load Tester, which usually provide force-resistance characteristics in elastic range. In order to estimate P-y curves using those methods, the non-linear characteristics of soil which is one of the most important characteristics of the soil cannot be obtained. Therefore, P-y curves are estimated usually using elastic modulus ($E_O$, $E_R$) of lateral pressure-deformation ratio obtained within the range of elastic behavior. Even though the pile foundation is designed using borehole tests in field to increase design accuracy, it is necessary to use a higher safety factor to improve the reliability of the design. A Large Displacement Borehole Testmeter(LDBT) is developed to measure nonlinear characteristics of the soil in this study. P-y curves can be directly achieved from the developed equipment. Comparisons between measured P-y curves the LDBT developed equipment, theoretical methods based on geotechnical investigations, and back-calculated P-y curves from field tests are shown in this paper. The research result shows that the measured P-y curves using LDBT can be properly matched with back-calculated P-y curves from filed tests by applying scale effects for sand and clay, respectively.

  • PDF

Assessment of minimum pillar width and reinforcement of parallel tunnel using numerical analysis and field monitoring (수치해석과 현장계측을 통한 병렬터널의 최소 필라폭과 보강에 대한 평가)

  • An, Yong-Koan;Kong, Suk-Min;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.299-310
    • /
    • 2014
  • Nationally, tunnel and underground constructions are necessary for the environmental sustainability and the efficient use of land space. For the importance of eco-friendly circumstances, 2-arch or large road tunnel has been designed so far. However, such a 2-arch or large tunnel has problems in terms of cost, constructability, construction period, and maintenance. Therefore, in this study, tunnel behavior and stability of rock pillar according to the pillar width and cover depth for parallel tunnels are investigated by performing FE analysis and using empirical formula. According to the results, Rock pillar is reinforced for distributed vertical load by Tie-Bolt due to unpredicted ground deformation, and the reinforced rock pillar's behaviour from the FE analysis shows a quite good agreement with field measurement. According to ground conditions, if the pillar width of the parallel tunnels is reduced, it can be more efficient in use of the tunnel space compared to previous tunnels.

An improved Maxwell creep model for salt rock

  • Wang, Jun-Bao;Liu, Xin-Rong;Song, Zhan-Ping;Shao, Zhu-Shan
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.499-511
    • /
    • 2015
  • The creep property of salt rock significantly influences the long-term stability of the salt rock underground storage. Triaxial creep tests were performed to investigate the creep behavior of salt rock. The test results indicate that the creep of salt rock has a nonlinear characteristic, which is related to stress level and creep time. The higher the stress level, the longer the creep time, the more obvious the nonlinear characteristic will be. The elastic modulus of salt rock decreases with the prolonged creep time, which shows that the creep damage is produced for the gradual expansion of internal cracks, defects, etc., causing degradation of mechanical properties; meanwhile, the creep rate of salt rock also decreases with the prolonged creep time in the primary creep stage, which indicates that the mechanical properties of salt rock are hardened and strengthened. That is to say, damage and hardening exist simultaneously during the creep of salt rock. Both the damage effect and the hardening effect are considered, an improved Maxwell creep model is proposed by connecting an elastic body softened over time with a viscosity body hardened over time in series, and the creep equation of which is deduced. Creep test data of salt rock are used to evaluate the reasonability and applicability of the improved Maxwell model. The fitting curves are in excellent agreement with the creep test data, and compared with the classical Burgers model, the improved Maxwell model is able to precisely predict the long-term creep deformation of salt rock, illustrating our model can perfectly describe the creep property of salt rock.

Half-Scaled Substructure Test for the Performance Evaluation of a Transmission Tower subjected to Wind Load (송전철탑의 내풍안전성 평가를 위한 1/2축소부분구조 실험)

  • Moon, Byoung-Wook;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.641-652
    • /
    • 2007
  • In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, is was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

Nonlinear Dynamic Responses among Wave, Submerged Breakwater and Seabed ($\cdot$수중방파제$\cdot$지반의 비선형 동적응답에 관한 연구)

  • HAN DONG SOO;KIM CHANG HOON;YEOM CYEONG SEON;KIM DO SAM
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.35-43
    • /
    • 2005
  • Recently, various-shaped coastal structures have been studied and developed. Among them, the submerged breakwater became generally known as a more effective structure than other structures, bemuse it not only serves its original function, but also has the ability to preserve the coastal environment. Most previous investigations have been focused on the wave deformation and energy dissipation due to submerged breakwater, but less interest was given to their internal properties and dynamic behavior of the seabed foundation under wave loadings. In this study, a direct numerical simulation (DNS) is newly proposed to study the dynamic interaction between a permeable submerged breakwater aver a sand seabed and nonlinear waves, including wave breaking. The accuracy of the model is checked by comparing the numerical solution with the existing experimental data related to wave $\cdot$ permeable submerged breakwater $\cdot$ seabed interaction, and showed fairly nice agreement between them. From the numerical results, based on the newly proposed numerical model, the properties of the wave-induced pore water pressure and the flow in the seabed foundation are studied. In relation to their internal properties, the stability oj the permeable submerged breakwater is discussed.

A Study on the Deformation Characteristics on Underground Pipe to Backfill Material Types Using Finite Element Method (유한요소해석을 통한 되메움재 종류에 따른 지하매설관의 변형 특성 연구)

  • Byun, Yoseph;Ahn, Byungje;Kwang, Byeongjoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.11-18
    • /
    • 2009
  • When underground pipe is installed, backfill materials need proper compaction. But in case of circular underground pipe, compaction of backfill material is difficult and compaction efficiency is poor at beloe the pipe. It caused the stability of underground pipe is reduced and various damages occurred. One of the solutions to solve this problem for underground pipe is to use controlled low strength material (CLSM). CLSM is made by concept of low strength concrete, which is applied to geotechnical engineering field. The representative characteristics of CLSM are self-leveling, self-compacting and flowability. In addition, its strength can be controlled and its construction method is simple. The behavior of underground pipe was investigated by finite element analysis for various backfill materials under same condition. As a result, in case of using the CLSM as backfill material, surface settlement and displacement of pipe are reduced comparing with those in case of using field soil or sand.

  • PDF