CT 영상의 획득 및 전송 등의 과정에서 발생하는 잡음은 영상의 질을 저하시키는 요소로 작용한다. 따라서 이를 해결하기 위한 잡음제거는 영상처리에서 중요한 전처리 과정이다. 본 논문에서는 딥러닝의 convolutional autoencoder (CAE) 모형에서 기존 컨볼루션 연산 대신 deformable 컨볼루션 연산을 적용한 deformable convolutional autoencoder (DeCAE) 모형을 이용하여 잡음을 제거하고자 한다. 여기서 deformable 컨볼루션 연산은 기존 컨볼루션 연산보다 유연한 영역에서 영상의 특징들을 추출할 수 있다. 제안된 DeCAE 모형은 기존 CAE 모형과 같은 인코더-디코더 구조로 되어있으나 효율적인 잡음제거를 위해 인코더는 deformable 컨볼루션 층으로 구성하고, 디코더는 기존 컨볼루션 층으로 구성하였다. 본 논문에서 제안된 DeCAE 모형의 성능 평가를 위해 다양한 잡음, 즉, 가우시안 잡음, 임펄스 잡음 그리고 포아송 잡음에 의해 훼손된 CT 영상을 대상으로 실험하였다. 성능 실험 결과, DeCAE 모형은 전통적인 필터 즉, Mean 필터, Median 필터와 이를 개선한 Bilateral 필터, NL-means 방법 뿐만 아니라 기존의 CAE 모형보다 정성적이고, 정량적인 척도 즉, MAE (Mean Absolute Error), PSNR (Peak Signal-to-Noise Ratio) 그리고 SSIM (Structural Similarity Index Measure) 면에서 우수한 결과를 보였다.
의미론적 분할(Semantic Segmentation)은 이미지 내의 객체 및 배경을 픽셀 단위로 분류하는 작업으로 정밀한 탐지가 요구되는 분야에서 활발히 연구되고 있다. 기존 어텐션 기법은 의미론적 분할의 다운샘플링(Downsampling) 과정에서 발생하는 정보손실을 완화하기 위해 널리 사용됐지만 고정된 Convolution 필터의 형태 때문에 객체의 형태에 따라 유동적으로 대응하지 못했다. 본 논문에서는 이를 보완하고자 Deformable Convolution과 셀프어텐션(Self-attention) 구조기반 어텐션 모듈을 사용한 의미론적 분할 모델을 제안한다.
Building segmentation using satellite imagery such as EO (Electro-Optical) and SAR (Synthetic-Aperture Radar) images are widely used due to their various uses. EO images have the advantage of having color information, and they are noise-free. In contrast, SAR images can identify the physical characteristics and geometrical information that the EO image cannot capture. This paper proposes a learning framework for efficient building segmentation that consists of a teacher-student-based privileged knowledge distillation and deformable convolution block. The teacher network utilizes EO and SAR images simultaneously to produce richer features and provide them to the student network, while the student network only uses EO images. To do this, we present objective functions that consist of Kullback-Leibler divergence loss and knowledge distillation loss. Furthermore, we introduce deformable convolution to avoid pixel-level noise and efficiently capture hard samples such as small and thin buildings at the global level. Experimental result shows that our method outperforms other methods and efficiently captures complex samples such as a small or narrow building. Moreover, Since our method can be applied to various methods.
In this paper, we propose an efficient reference-based compression artifact reduction network for 360-degree images in an equi-rectangular projection (ERP) domain. In our insight, conventional image restoration methods cannot be applied straightforwardly to 360-degree images due to the spherical distortion. To address this problem, we propose an adaptive disparity estimator using a deformable convolution to exploit correlation among 360-degree images. With the help of the proposed convolution, the disparity estimator establishes the spatial correspondence successfully between the ERPs and extract matched textures to be used for image restoration. The experimental results demonstrate that the proposed algorithm provides reliable high-quality textures from the reference and improves the quality of the restored image as compared to the state-of-the-art single image restoration methods.
International Journal of Naval Architecture and Ocean Engineering
/
제9권3호
/
pp.266-281
/
2017
Hydroelastic interactions of a deformable floating body with random waves are investigated in time domain. Both hydroelastic motion and structural dynamics are solved by expansion of elastic modes and Fourier transform for the random waves. A direct and efficient structural analysis in time domain is developed. In particular, an efficient way of obtaining distributive loads for the hydrodynamic integral terms including convolution integral by using Fubini theory is explained. After confirming correctness of respective loading components, calculations of full distributions of loads in random waves are expedited by reformulating all the body loading terms into distributed forms. The method is validated by extensive convergence tests and comparisons against the counterparts of the frequency-domain analysis. Characteristics of motion/deformation responses and stress resultants are investigated through a parametric study with varying bending rigidity and types of random waves. Relative contributions of componential loads are identified. The consequence of elastic-mode resonance is underscored.
적층판의 동적거동에 대한 유한요소해석모델개발을 목적으로 전단변형을 적합하게 고려한 적층판이론에 대한 변분원리를 유도하였다. 유도방법은 Sandhu 등에 의해 개발된 다변수 경계치문제의 변분원리이론을 따랐으며, 지배방정식의 미분연산자 매트릭스를 self-adjoint로 만들기 위하여 convolution을 이중선형사상으로 사용하였다. 유도된 적층판의 범함수에는 경계조건, 초기조건뿐만 아니라 유한요소해석모델에서 생길 수 있는 요소간 불연속조건도 포함시킬 수 있다. 상태변수의 적합함수공간을 확장하거나 특정조건을 적용하므로서 다양한 형태의 범함수를 유도할 수 있으며, 이를 통해 다양한 유한요소해석모델의 개발이 가능함을 논하였다.
In the construction and development of modern industrial production technology, the traditional technology management mode is faced with many problems such as low qualification rates and high application costs. In the research, an improved workpiece defect detection method based on deep learning is proposed, which can control the application cost and improve the detection efficiency of irregular defects. Based on the research of the current situation of deep learning applications, this paper uses the improved Faster R-CNN network structure model as the core detection algorithm to automatically locate and classify the defect areas of the workpiece. Firstly, the robustness of the model was improved by appropriately changing the depth and the number of channels of the backbone network, and the hyperparameters of the improved model were adjusted. Then the deformable convolution is added to improve the detection ability of irregular defects. The final experimental results show that this method's average detection accuracy (mAP) is 4.5% higher than that of other methods. The model with anchor size and aspect ratio (65,129,257,519) and (0.2,0.5,1,1) has the highest defect recognition rate, and the detection accuracy reaches 93.88%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.