• Title/Summary/Keyword: defocusing

Search Result 79, Processing Time 0.025 seconds

$CO_2$ Laser Irradiation Strengthening by Defocused Beam (비집속빔을 이용한 $CO_2$ 레이저 빔 조사강화)

  • Seo, Jung;Lee, Je-Hoon;Kang, Hee-Sin;Kim, Jung-Oh;Lee, Moon-Yong;Oh, Sang-Jin;Lee, Kyu-Hyun
    • Laser Solutions
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • Defocused CO$_2$ laser beam irradiation strengthening of 60kgf/$\textrm{mm}^2$ grade steel sheet was investigated to obtain the tensile strength similar to that of fully penetrated one by the focused beam. The melted line width by the defocused beam was 3∼4 times larger compared to that of the focused beam. However, the increase of tensile strength with 1 line irradiation by the defocused beam was similar to that of 2~3 lines by the focused beam. The increase(37.6%) of bending strength with 1 line by the defocused beam was higher than the increase(12.9%) of tensile strength. Also, the effect of cooling gas to strengthening was observed.

  • PDF

The generation of dark spatial soliton in photorefractive photovoltaic medium (광굴절 광기전력 물질에서의 어두운 공간솔리톤 발생)

  • 전진호;전남희;이원규;노영철;이재형;장준성
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.1
    • /
    • pp.48-54
    • /
    • 2001
  • We investigate the generation of the dark spatial soliton and its role of wave guiding in Fe doped$LiNbO_3$ A cw Ar+ laser of 488 nm is used for the generation of the dark spatial soliton. The generation of the dark spatial soliton is observed even at the laser intensity as low as 10 mW/cm2. The self-defocusing effect is observed when the direction of the intensity variation is parallel to the optic axis, while it can't be seen when perpendicular to the axis. So, it is verified that the refractive index change is generated parallel to the optic axis. When 633 nm He-Ne laser beam is injected into the dark spatial soliton, the beam propagates just as in the diffraction free medium. So, it is verified that the dark spatial soliton can act as a waveguide.eguide.

  • PDF

Characteristics of Laser Surface Hardening for SM45C Medium Carbon Steel using Continuous Wave Nd:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 SM45C 중탄소강의 레이저표면경화 특성)

  • Yoo, Young-Tae;Shin, Ho-Jun;Ahn, Dong-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.51-58
    • /
    • 2005
  • Laser surface hardening technologies have been used to improve characteristics of wear and to enhance the fatigue resistance for automotive parts. The objective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser heat treatment for the case of SM45C medium carbon steel. CW Nd:YAG laser is selected as the heat source. The optical lens with the elliptical profile is designed to obtain a wide heat treatment area with a uniform hardness. From the results of the experiments, it has been shown that the maximum hardness is approximatly 780 Hv when the power and the travel speed of laser are 1,095 W and 0.6 m/min, respectively. In addition, the hardening width using the elliptical lens was three time larger than that using the defocusing of laser beam.

A study on the pure Al weldability using a pulsed Nd : YAG laser (펄스형 Nd:YAG 레이저를 이용한 Al의 용접 특성연구)

  • 김덕현
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.52-61
    • /
    • 1993
  • Laser welding of ASTM no. 1060 Al plate with a pulsed Nd: YAG laser of 200W average power was performed for end capping of KMRR nuclear fuel elements In this research, we performed basic welding experiments. Firstly, laser output parameters which affect laser welding parameters were studied by changing laser input parameters for effective welding of 1060 Al plates. We found that laser power density and pulse energy are important parameters for smooth bead shape. Secondly, welding parameters which affect weld width-to-depth ratio were studied by changing power density and pulse energy, shielding gas, and defocusing. We found that power density must be higher than 0.3 Mw/cm$^{2}$ pulse energy must be higer than 3 J. travel speed must not exceed 200mm/sec, laser focus must be existed beneath 2-3mm from plate surface and helium is proper shielding gas. Thirdly, we studied the weld defects of Al-1060 such as crack and porosity in lap-joint welding. We designed new welding geometry for crack free welding of Al-1060 plates, and obtained crack free weldment but with lack of fusion. However, with Ti, Zr grain refiner elements, we can weld Al plates without solidification hot crack. Finally, we studied the origin of porosity by changing shielding gas. And we found that porosity was resulted from entrapment of shielding gas by the collapsing keyhole.

  • PDF

The Surface Hardening Characteristics of Hot work Tool Steel by CW Nd:YAG Laser (CW Nd:YAG 레이저에 의한 열간금형 공구강의 표면경화특성)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Shin B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.219-220
    • /
    • 2006
  • Laser surface hardening technologies have been used to improve characteristics of wear and to enhance the fatigue resistance for mold parts. The objective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser surface hardening for the case of SKD61 steel. CW Nd:YAG laser is selected as the heat source. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with a uniform hardness. From the results of the experiments, it has been shown that the maximum hardness is approximatly 740 Hv when the power, focal position and the travel of laser are 1,095 W, +1mm and 0.3 m/min, respectively. In addition, the hardening width using the elliptical lens was three time larger than that using the defocusing of laser beam.

  • PDF

Micromachining Characteristics inside Transparent Materials using Femtoseocond Laser Pulses (펨토초 레이저에 의한 투명 유리내부 미세가공특성)

  • Nam Ki-Gon;Cho Sung-Hak;Chang Won-Seok;Na Suck-Joo;Whang Kyung-Hyun;Kim Jae-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.190-196
    • /
    • 2006
  • Transparent materials are widely used in the fields of optic parts and bio industry. We have experiment to find out the characteristics of the micromachining inside transparent materials using femtosecond laser pulses. With its non-linear effects by very high peak intensity, filament (plasma channel) was formed by the cause of the self-focusing and the self-defocusing. Physical damage could be found when the intensity is high enough to give rise to the thermal stress or evaporation. At the vicinity of the power which makes the visible damage or modification, the structural modification occurs with the slow scanning speed. According to the polarization direction to the scanning direction, the filament quality is quite different. There is a good quality when the polarization direction is parallel to the scanning direction. For fine filament, we could suggest the conditions of the high numerical aperture lens, the short shift of focusing point, the low scanning speed and the low power below 20 mW. As the examples of optics parts, we fabricated the fresnel zone plate with the $225{\mu}m$ diameter and Y-bend optical wave guide with the $5{\mu}m$ width.

Characteristics Induction and Laser Surface hardening of SM45C Steel (SM45C강의 레이저표면경화와 고주파표면경화특성)

  • Na Gee-Dae;Shin Ho-Jun;Shin Byung-Heon;Yoo Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.39-50
    • /
    • 2006
  • Laser heat treatment technologies have been used to improve characteristics of wear and to enhance the fatigue resistance for automotive parts. The bjective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser heat treatment for the case of SM45C medium carbon steel. CW Nd:YAG laser is selected as the heat source. The optical lens with the elliptical profile is designed to obtain a wide heat treatment area with a uniform hardness. From the results of the experiments, it has been shown that the maximum hardness is approximatly 780 Hv when the power and the travel of laser are 1,095 W and 0.6 m/min, respectively. In addition, the hardening width using the elliptical lens was three time larger than that using the defocusing of laser beam.

Laser Welding of AZ31B-H24 Mg Alloy with AZ61 Filler Wire (AZ61 필러 와이어를 첨가한 AZ31B-H24 마그네슘 합금의 레이저 용접)

  • Ryu, Chung-Sun;Bang, Kook-Soo;Lee, Mok-Young;Chang, Woong-Sung
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.54-58
    • /
    • 2008
  • Laser welding with AZ61 filler wire was carried out to improve formability though reduction of porosity and formation of under fill bead. Optimum welding condition and mechanical properties of butt joint for $400{\times}500{\times}1.3mm$ magnesium sheets were studied. Optimal welding conditions of laser power, welding speed, and defocusing length are 1000W, 3m/min, and 2mm, respectively. Results of tensile test indicated that both tensile strength and elongation of specimens welded with filler wire were improved at room temperature because of reduction of porosity and under-filled bead formation in addition to the precipitation hardening and microstructure refinement by Al-Mn and Mg-Al-Zn precipitates. At elevated temperature of $200{\sim}350^{\circ}C$, fracture location of tensile specimen was shifted from weld metal to base metal, indicating less softening of weld metal than base metal.

Microstructure of Intermixed $Zn_{1-x}Fe_xSe$ Alloys in (ZnSe/FeSe) Superlattices ((ZnSe/FeSe) 초격자에 있어서 $Zn_{1-x}Fe_xSe$ 상호확산층의 미세구조)

  • Park, Kyeong-Soon
    • Applied Microscopy
    • /
    • v.27 no.3
    • /
    • pp.235-241
    • /
    • 1997
  • The microstructure of intermixed $Zn_{1-x}Fe_xSe$ layers in the (ZnSe/FeSe) superstrates grown on (00l) GaAs substrates has been investigated by high -resolution transmission electron microscopy and computer simulations of lattice images. Computer image simulations have been performed by the multislice method under various sample thicknesses and defocusing conditions. The simulated lattice images were compared with the experimental lattice images. Also, CuAu-I type ordering was often observed in the intermixed $Zn_{1-x}Fe_xSe$ alloys. This CuAu-I type ordered structure consists of alternating ZnSe and FeSe monolayers along the <100> and <110> directions.

  • PDF

T-joint Laser Welding of Circular and Square Pipes Using the Vision Tracking System (용접선 추적 비전장치를 이용한 원형-사각 파이프의 T형 조인트 레이저용접)

  • Son, Yeong-Il;Park, Gi-Yeong;Lee, Gyeong-Don
    • Laser Solutions
    • /
    • v.12 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • Because of its fast and precise welding performance, laser welding is becoming a new excellent welding method. However, the precise focusing and robust seam tracking are required to apply laser welding to the practical fields. In order to laser weld a type of T joint like a circular pipe on a square pipe, which could be met in the three dimensional structure such as an aluminum space frame, a visual sensor system was developed for automation of focusing and seam tracking. The developed sensor system consists of a digital CCD camera, a structured laser, and a vision processor. It is moved and positioned by a 2-axis motorized stage, which is attached to a 6 axis robot manipulator with a laser welding head. After stripe-type structured laser illuminates a target surface, images are captured through the digital CCD camera. From the image, seam error and defocusing error are calculated using image processing algorithms which includes efficient techniques handling continuously changed image patterns. These errors are corrected by the stage off-line during welding or teaching. Laser welding of a circular pipe on a square pipe was successful with the vision tracking system by reducing the path positioning and de focusing errors due to the robot teaching or a geometrical variation of specimens and jig holding.

  • PDF