• Title/Summary/Keyword: deflections

Search Result 838, Processing Time 0.042 seconds

Thermal effects on nonlocal vibrational characteristics of nanobeams with non-ideal boundary conditions

  • Ebrahimi, Farzad;Shaghaghi, Gholam Reza
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1087-1109
    • /
    • 2016
  • In this manuscript, the small scale and thermal effects on vibration behavior of preloaded nanobeams with non-ideal boundary conditions are investigated. The boundary conditions are assumed to allow small deflections and moments and the concept of non-ideal boundary conditions is applied to the nonlocal beam problem. Governing equations are derived through Hamilton's principle and then are solved applying Lindstedt-Poincare technique to derive fundamental natural frequencies. The good agreement between the results of this research and those available in literature validated the presented approach. The influence of various parameters including nonlocal parameter, thermal effect, perturbation parameter, aspect ratio and pre-stress load on free vibration behavior of the nanobeams are discussed in details.

Analysis of higher order composite beams by exact and finite element methods

  • He, Guang-Hui;Yang, Xiao
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.625-644
    • /
    • 2015
  • In this paper, a two-layer partial interaction composite beams model considering the higher order shear deformation of sub-elements is built. Then, the governing differential equations and boundary conditions for static analysis of linear elastic higher order composite beams are formulated by means of principle of minimum potential energy. Subsequently, analytical solutions for cantilever composite beams subjected to uniform load are presented by Laplace transform technique. As a comparison, FEM for this problem is also developed, and the results of the proposed FE program are in good agreement with the analytical ones which demonstrates the reliability of the presented exact and finite element methods. Finally, parametric studies are performed to investigate the influences of parameters including rigidity of shear connectors, ratio of shear modulus and slenderness ratio, on deflections of cantilever composite beams, internal forces and stresses. It is revealed that the interfacial slip has a major effect on the deflection, the distribution of internal forces and the stresses.

Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.69-84
    • /
    • 2020
  • Based on differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), forced vibrations of a porous functionally graded (FG) scale-dependent beam in thermal environments have been investigated in this study. The nanobeam is assumed to be in contact with a moving point load. NSGT contains nonlocal stress field impacts together with the microstructure-dependent strains gradient impacts. The nano-size beam is constructed by functionally graded materials (FGMs) containing even and un-even pore dispersions within the material texture. The gradual material characteristics based upon pore effects have been characterized using refined power-law functions. Dynamical deflections of the nano-size beam have been calculated using DQM and Laplace transform technique. The prominence of temperature rise, nonlocal factor, strain gradient factor, travelling load speed, pore factor/distribution and elastic substrate on forced vibrational behaviors of nano-size beams have been explored.

A Study on the Copper Bus-bar Drawing Dies using APDL/UIDL (APDL/UIDL을 이용한 동부스바 인발금형에 관한 연구)

  • Kwon H.H.;Lee J.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.45-53
    • /
    • 2001
  • Copper bus-bar is made by drawing process and used in many part of industry. When design drawing die for copper bus-bar, design factor is focused on the deformation of die-land by drawing force and shrink fit. In this paper, to determine shrink fit value is analyzed by automatic shrink fit analysis program, APDL/UIDL language in a commercial FEM package, ANSYS, has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process and by using DEFORM software for drawing process analysis. This data can be processed as load input data for a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the drawing die design. The stress analysis of the dies is used to determine optimized dimension of die-land.

  • PDF

A study on the Injection Molding Process of the Case of Drum Type Washer using Moldflow (Moldflow를 이용한 드럼세탁기 케이스의 사출성형공정에 관한 연구)

  • Park, Chul-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.90-96
    • /
    • 2009
  • Injection molding process is one of the most important methods to produce plastic parts with high efficiency and low cost. Today, injection molded parts have been increased dramatically the demand for high strength and quality applications. This report investigates that the optimum injection molding condition for minimum of shrinkage. Molding shrinkage is occurred by several reasons such as thermal shrinkage, a hardening process and compressibility. This report concentrate on shrinkage by a hardening process. As Change a holding pressure and holding time, checked deflections of X, Y, Z directions by shrinkage based on same condition. In conclusion, it was found that holding pressure is stronger and holding time is longer, the deflection by shrinkage is smaller because injection molding needs enough time for cooling and high density. The FEM Simulation CAE tool. Moldflow, is used for the analysis of injection molding process.

Recycled Concrete Aggregates: A Review

  • McNeil, Katrina;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • This paper discusses the properties of RCA, the effects of RCA use on concrete material properties, and the large scale impact of RCA on structural members. The review study yielded the following findings in regards to concrete material properties: (1) replacing NA in concrete with RCA decreases the compressive strength, but yields comparable splitting tensile strength; (2) the modulus of rupture for RCA concrete was slightly less than that of conventional concrete, likely due to the weakened the interfacial transition zone from residual mortar; and (3) the modulus of elasticity is also lower than expected, caused by the more ductile aggregate. As far as the structural performance is concerned, beams with RCA did experience greater midspan deflections under a service load and smaller cracking moments. However, structural beams did not seem to be as affected by RCA content as materials tests. Most of all, the ultimate moment was moderately affected by RCA content. All in all, it is confirmed that the use of RCA is likely a viable option for structural use.

Bending Behaviors of CAS and CUS Thick-walled Composite Channel Beam (대칭 및 반 대칭으로 적층된 복합재료 채널 빔의 굽힘 거동)

  • Park, Mi-Jung;Chun, Heoung-Jae;Byun, Jun-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.167-171
    • /
    • 2005
  • The thick open section composite beams are used extensively as load carrying members and stiffeners of structural elements. However, most of studies on thick composite beams are limited only to closed section beams. In this study, an open cross-section thick-walled composite beam model which includes coupled stiffness, transverse shear, and warping effects is suggested and the deflections associated with the thick-walled composite beams and thin-walled composite beams are obtained and compared with the finite element analysis results. The correlation between thin and thick walled composite beam was achieved for two different layup configurations which are the circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiffness (CUS) beams.

  • PDF

Free Vibration of a Thin Plate with Small Deflections by Semi-Analytical Approach (반해석적 방법에 의한 작은 변위를 가지는 얇은판의 자유진동해석)

  • 최덕기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1967-1973
    • /
    • 1994
  • The free vibration of a thin plate with three different boundary conditions is discussed in this paper. A semi-analytical approach to the plate problems has been exploited using computer algebra system(CAS). The approximate solutions are assumed as algebraic polynomials that satisfy the appropriate boundary conditions. In order to solve problems, Galerkin method is used, which is known as an ineffective tool for practical engineering problems, being involved with a large number of multiple integration and differentiation. All the admissible functions used in this paper are generated automatically by CAS otherwise a tedious algebraic manipulations should be done by hand. One, six and fifteen-term solutions in terms of frequency parameters are presented and compared with exact solutions. Even using one-term solution, the comparison with existing data shows good agreement and accuracy of the present method.

Bending and Torsional Behaviors of Thick Composite Channel Beam (두꺼운 복합재료 채널빔의 굽힘 및 비틀림 거동)

  • Park, Mi-Jung;Choi, Yong-Jin;Chun, Heung-Jae;Byun, Joon-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.480-485
    • /
    • 2004
  • The applications of composite materials have increased over the past few decades in a variety of structures that require high ratio of stiffness and strength to weight ratios. Recently the thick open section composite beams are used extensively as load carrying members and stiffeners of structural elements. However, most of studies on thick composite beams are limited only to closed section beams. In this study, an open cross-section thick-walled composite beam model which includes coupled stiffness, transverse shear, and warping effects is suggested and the deflections associated with the thick-walled composite beams and thin-walled composite beams are obtained and compared with the finite element analysis results.

  • PDF

Development of a Practical Method to Optimize Two-Quality Characteristics in Injection Molded Parts (사출 성형품의 두 품질특성 최적화를 위한 실용적 방법의 개발)

  • Park, Jong-Cheon;Cha, Jae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.90-97
    • /
    • 2015
  • Optimization of multi-quality characteristics in injection molded parts is very important, but it is sometimes difficult for part/mold designers. The objective of this study is to develop a practical design methodology for optimizing two-quality characteristics of injection molded parts. To attain this end, we developed a new design-range reduction algorithm based on Taguchi's orthogonal arrays for two characteristics. Then, the algorithm was integrated with commercial injection-molding simulation tools. A feature of the proposed methodology is that it allows field-designers unfamiliar with general optimization methods to be able to apply the methodology to their design problems with ease. Finally, we have applied the proposed design methodology to optimization of weldlines and deflections in an actual bezel model. The results show the usefulness of this methodology.