• Title/Summary/Keyword: deflection control

Search Result 410, Processing Time 0.029 seconds

Vibration suppression in high-speed trains with negative stiffness dampers

  • Shi, Xiang;Zhu, Songye;Ni, Yi-qing;Li, Jianchun
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.653-668
    • /
    • 2018
  • This work proposes and investigates re-centering negative stiffness dampers (NSDs) for vibration suppression in high-speed trains. The merit of the negative stiffness feature is demonstrated by active controllers on a high-speed train. This merit inspires the replacement of active controllers with re-centering NSDs, which are more reliable and robust than active controllers. The proposed damper design consists of a passive magnetic negative stiffness spring and a semi-active positioning shaft for re-centering function. The former produces negative stiffness control forces, and the latter prevents the amplification of quasi-static spring deflection. Numerical investigations verify that the proposed re-centering NSD can improve ride comfort significantly without amplifying spring deflection.

Deflection Limits based on the Vibration Serviceability of Guideway Structures Considering Maglev Train-Guideway Interaction (자기부상열차와 가이드웨이 상호작용을 고려한 가이드웨이 구조물의 진동사용성 처짐 한계)

  • Lee, Jin Ho;Kim, Sung Il
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.111-119
    • /
    • 2017
  • In this study, deflection limits based on the vibration serviceability of guideway structures are proposed considering maglev train-guideway interaction. Equations of motion are derived for a simplified maglev railway. Feedback constants for the control of the electromagnetic force for levitation are optimized in order to minimize the airgap fluctuations. Deflection limits for a guideway are calculated for various operating speeds of a maglev train, span lengths of a guideway, and natural frequencies and damping ratios of the second suspension in order to satisfy the serviceability criteria for airgaps and for the vertical acceleration of a cabin. From the analysis results, proposed are requirements for the second suspension of maglev trains and deflection limits for guideway structures.

Experimental Study of the Behavior Characteristics of Actuator Diaphragms in Thermopneumatic Micropumps (열공압형 마이크로펌프의 액추에이터 박막 거동 특성에 관한 실험적 연구)

  • Lee, Jong-Mun;Kim, Young-Deuk;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.599-606
    • /
    • 2010
  • In the present study, actuators with diaphragms of different thickness and chambers of different diameter are fabricated to examine experimentally how the behavior characteristics of the actuator diaphragm in a thermopneumatic micropump are affected by diaphragm thickness and chamber diameter under various operating conditions with different values of input voltage and frequency. The actuator comprises a microheater set on Pyrex glass, a chamber, and a diaphragm. For all values of the input energy, as the frequency decreases below 10 Hz, the maximum center deflection of the diaphragm greatly increases irrespective of diaphragm thickness and chamber diameter. At low frequencies, as the heat energy supplied to the chamber increases, the center of deflection of the diaphragm increases; the magnitude of deflection is high for thin diaphragms and for diaphragms whose chambers have small diameters. At frequencies higher than 10 Hz, all the design variables such as diaphragm thickness, chamber diameter, and the input energy have negligible effect on the center deflection of the diaphragm.

Development of Compressive Ultimate Strength Formulations for Ship Plating Stiffener with Cutout (선체 유공보강판의 압축최종강도에 관한 설계식 개발)

  • Ko Jae-Yong;Park Joo-Shin;Oh Dong-Kee
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.121-125
    • /
    • 2004
  • Recently, High Tensile Steel is adapt to thin plate on the steel structure and marine structure is used widely, It is possible for buckling happens great. Specially, Initial deflection of ship structure happens in place absence necessarily by heat processing of welding or cutting etc. This Initial Deflection is exerted negative impact when thin plate absence complicated nonlinear behaviour accompanied secondary budding. As a result, must idealize initial deflection that occurrence is possible to endow stability and accuracy in the hull structure or marine structure and reflect in early structure design considering secondary buckling. Longi direction of compressive load interacts and analyzed finite element series analysis that apply various kinds initial deflection shape measured actually on occasion that is arranged simply supported condition in this research. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

Evaluation of Structural Behavior and Serviceability on Transverse Connection for Modular Slab Bridge System (모듈러 슬래브교량의 횡방향 연결부 구조적 거동 및 사용성 평가)

  • Choi, Jin-Woong;Lee, Sang-Seung;Park, Sun-Kyu;Hong, Sung-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.139-146
    • /
    • 2014
  • Recently, in field of bridge construction, modular technology has been studied to reduce construction period, traffic impact and environmental impact. This study is a part of research related to the modular bridges. The aim of the study is to analyze the structural behavior and evaluate a serviceability for transverse connection of modular slab bridge. A total of four specimens were fabricated. including a control beam for finding the maximum load by static test. And one control beam and two segmental beams were fabricated for cyclic loading test. As the test result, the beams that were introduced 100% of the design prestressing force showed a smaller maximum deflection, residual deflection and crack width than the control beam. The beam for serviceability evaluation was satisfied with structural serviceability limits of the deflection and crack.

A New Approach to Structure of Aerodynamic Fin Control System for STT Missiles

  • Song, Chan-Ho;Lee, Yong-In;Kim, Seung-Hwan;Kim, Pil-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.537-541
    • /
    • 2003
  • In order to control the missiles by aerodynamics, control surfaces sometime called fins are used. Deflection angles of these fins are the right control variables of the aerodynamics, but aerodynamicists prefer to use analytic variables called aileron, elevator and rudder instead of these physical variables, because these three analytic variables dominantly influence on the roll, pitch and yaw channels of the missile maneuver, respectively, and each can be assumed a linear combination of four fin deflection angles. On that basis, roll, pitch and yaw autopilots for controlling the attitudes or lateral acceleration of the missile are designed, and as a consequence outputs of each autopilot are aileron, elevator and rudder commands, respectively. In the existing fin control scheme for the typical tail-fin controlled cruciform missiles, firstly these outputs are distributed to four fin defection commands, and after that four fins are actuated by fin controllers so that their deflections follow the commands. This paper shows that performance of such control schemes can be degraded significantly when fin actuators have certain physical constraints such as slew rate, voltage or current limit, uncertainty of actuator dynamics, and so on, and propose a new control scheme which alleviates such problems. This scheme can be widely applied to various fin actuation systems. But in this paper, for convenience, tail-fin controlled cruciform missile is taken as an example, and it is shown that a proposed control scheme gives better performance than the existing one.

  • PDF

Analysis of 3-Dimensional Magnetic Field Distribution in CPM Considering Magnetization Vector Distribution and Design of CPM (자화 벡터 분포를 고려한 CPM의 3차원 자계 분포 해석 및 설계)

  • Lee, Cheol-Gyu;Gwon, Byeong-Il;Park, Seung-Chan;U, Gyeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.545-553
    • /
    • 2002
  • This paper is about the analysis of 3-dimensional magnetic field distribution in CPM(Convergence Purity Magnet) considering magnetization vector and the optimum design of CPM. The magnetization vector of CPM is obtained using 2-dimensional magnetization FEA(Finite Element Analysis) coupled with Priesach model. Using this magnetization vector of CPM, we analysed the 2-dimensional and 3-dimensional magnetostatic field of CPM and know that these analysis results are not equal. From experimental result, we know that the 3-dimensional analysis is accurate because the magnetic field distribution in CPM cannot be considered correctly by 2-dimensional analysis because of the shape of CPM. Finally, the optimum designing of CPM which control accurately the electron beam deflection in CRT(Cathode Ray Tube) was possible using 3-dimensional magnetic field analysis result.

Automatically Bending Process control for Shaft Straightening Machine (축교정기를 위한 자동굽힘공정제어기 설계)

  • 김승철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.54-59
    • /
    • 1998
  • In order to minimize straightness error of deflected shafts, a automatically bending process control system is designed, fabricated, and studied. The multi-step straightening process and the three-point bending process are developed for the geometric adaptive straightness control. Load-deflection relationship, on-line identification of variations of material properties, on-line springback prediction, and studied for the three-point bending processes. Selection of a loading point supporting condition are derved form fuzzy inference and fuzzy self-learning method in the multi-step straighternign process. Automatic straightening machine is fabricated by using the develped ideas. Validity of the proposed system si verified through experiments.

  • PDF

Structural Characteristics of Preloaded Deep Deck Composite Slabs with Tenns

  • Lee, Tae-Hun;Kyung, Jae-Hwan;Song, Jong-Wook;Choi, Sung-Mo
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.187-195
    • /
    • 2020
  • As deep decks are commonly used in construction fields and high-rise building. etc, the slim floor system is increasingly employed. But, the drawback of the slim floor system is that the use of 250 mm deep decks in a structure having a clear span of more than 6 m because of deflection and flexural buckling. This study suggests a non-support construction method where tendons are installed in the deep decks of the slim floor structure to introduce preload in order to control deflection in a structure having a clear span of 9 m. Loading tests were conducted to verify the composite effect and flexural capacity of the preloaded deep deck composite slab and evaluate the serviceability of the supportless construction method. The results showed the complete composite behavior of the preloaded deep deck composite slab with tendons. The specimens satisfied deflection limit and the working load was approximately 25% of the maximum load capacity. It is deemed that the cross-sectional area and yield strength of the deck plate should be taken into account in slab design and the yield strength and diameter of the tendon should be determined with the pre-tension taken into consideration.

Design of Mover for LMTT based on Capstone Design (창의공학설계를 기반으로 한 LMTT용 이동체의 설계)

  • Han, Dong-Seop;An, Tae-Won;Lee, Seong-Wook;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.47-52
    • /
    • 2007
  • LMTT (Linear Motor based Transfer Technology), which is a new type transfer system used in the maritime container terminal for the port automation, is driven by PM LSM (Permanent Magnetic Linear Synchronous Motor), and largely consists of a controller, shuttle car, and rail. The shuttle car is divided into the frame part, the driving part, and wheels. Because the shuttle car is supported by four wheels in opposition to have five times length for the width of it, a larger deflection than other transfer system using the linear motor occurs. This deflection changes the gap between the mover and the stator, and then brings on an ununiform thrust force. So in this study, we dealt with the structural design for the mover of the shuttle car to generate the uniform thrust force for the efficient control of it. For the investigation, the thickness for each beam of the mover was adopted as design variables, the weight of the mover as objective function, and stress and deflection of the mover as constraint condition.

  • PDF