• Title/Summary/Keyword: deflection characteristic

Search Result 95, Processing Time 0.024 seconds

Effect of spatial characteristics of a weak zone on tunnel deformation behavior

  • Yoo, Chungsik
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-58
    • /
    • 2016
  • This paper focuses on the deformation behavior of tunnels crossing a weak zone in conventional tunneling. A three-dimensional finite element model was adopted that allows realistic modeling of the tunnel excavation and the support installation. Using the 3D FE model, a parametric study was conducted on a number of tunneling cases with emphasis on the spatial characteristics of the weak zone such as the strike and dip angle, and on the initial stress state. The results of the analyses were thoroughly examined so that the three-dimensional tunnel displacements at the tunnel crown and the sidewalls can be related to the spatial characteristic of the weak zone as well as the initial stress state. The results indicate that the effectiveness of the absolute displacement monitoring data as early warning indicators depends strongly on the spatial characteristics of the weak zone. It is also shown that proper interpretation of the absolute monitoring data can provide not only early warning for a weak zone outside the excavation area but also information on the orientation and the extent of the weak zone. Practical implications of the findings are discussed.

Material and Structural Characteristics of High Performance Permanent Form Using Stainless Steel Fiber (스테인레스 강섬유를 이용한 고성능 영구거푸집의 재료 및 구조적 거동특성에 관한 연구)

  • Sim, Jong-Sung;Oh, Hong-Seob;Ju, Min-Kwan;Kim, Kil-Jung;Shin, Hyun-Yang
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.73-82
    • /
    • 2006
  • Nowadays, the general stripping work of form has brought some problems; increase of total constructing cost resulted from the man-dependent form work procedure and environmental issues by wasting the debonded form. In this study, to effectively reduce unnecessary cost and resolve the environmental problems caused by these kinds of reason, a permanent form method using stainless steel fiber was introduced then its material and structural characteristics were evaluated. In the case of material characteristic, the permanent form had a good ductile behavior in the result of flexural test of the permanent form panel and pull-out test of insert bolt which is installed in the permanent form and perfect bonding capacity with a field concrete. In the case of structural characteristic, compressive and tensile behavior of the permanent form was evaluated. It also showed a good structural behavior in the view of load-deflection relationship, crack patterns and additional strengthening effect.

Fabrication of copper thin foils with 36 microns by cold rolling (냉간 압연 공정에 의한 두께 $36{\mu}m$ 동극박 제조 공정 해석)

  • Lee, S.H.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.413-416
    • /
    • 2007
  • In general, by means of the electrodepositing technique, a copper foil sample was prepared with a high purity and a high density. But the mechanical properties of the electrodepositing copper foil was lower than it's the rolling copper foil. However, the production of copper foil with approximately 36 microns thick in rolling process was very difficult. This paper describes the outline of the high accuracy cold rolling in 6 high mill which was developed for the purpose of rolling very thin accurate gauge copper foil(36 micron thick), and give several rolling characteristic of 600 mm wide copper foil. a) Large strain can be accumulated pass by pass in industrial multi-pass rolling processing to overcome large critical strain for thickness accuracy through optimization of rolling schedule. b) Also, permissible tension for rolling 0.45 $\sim$ 0.036 mm thick copper strip stably in accordance with the each pass work had been established by FEM simulation results. c) During the plate rolling process, considerable values of the forces of material pressure on the tool occur. These pressures cause the elastic deformation of the roll, thus changing the shape of the deformation region. A numerical simulation of roll deflection during cold rolling is presented in the paper. d) The proposed pass schedule can roll very thin copper foil of 36 micron thickness to a tolerance of ${\pm}1$ microns. The validity of simulated results was verified into rolling experiments on the copper foil.

  • PDF

Geological Characteristics of Kyongju-Ulsan Area : Palaeomagnetism and Magnetic Susceptibility of the Granitic Rocks in the Ulsan Fault Area (경주-울산일원에 대한 지역지질 특성연구 : 울산단층주변 화강암류의 잔류자기와 대자율)

  • Kim, In-Soo;Son, Moon;Jung, Hyun-Jung;Lee, Joon-Dong;Kim, Jeong-Jin;Paik, In Sung
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.31-43
    • /
    • 1998
  • A total of 469 granitic samples were collected from 44 sites in the Ulsan fault area, southeast Korea. According to the previous petrographic studies, the granitic rocks have been divided into four groups (Hornblende biotite granodiorite, Hornblende granite, Biotite granite and Alkali-feldspar granite). NRM intensities, values of low field magnetic susceptibility, and magnetic behaviors during stepwise demagnetization experiments suggest rather a three-fold classification: In this scheme, Hornblende granite and Biotite granite are grouped together, as they did not show any significant differences in magnetic characteristics. Based on the Ishihara (1979)'s criterion, Alkali-feldspar granite is classified as ilmenite-series granite, whereas others are classified as magnetite-series granite. In the eastern part of the study area including the Tertiary basin area, declinations of site-mean characteristic remanent magnetizations (ChRMs) show clockwise deflection of more than 30 from the reference direction of east Asia. Both along and in the adjacent region of the Ulsan fault-line, however, no deflection of remanent direction was observed. A boundary line between the deflected and undeflected site-mean ChRMs is defined in this study, which runs roughly parallel to the Ulsan fault-line at the distance of about 6km eastward from the fault-line. We suggest that this newly found boundary line, which we call Yonil tectonic line, released dextral simple shear stress acted in the southeastern part of the Korean peninsula during the opening stage of the East Sea in the Early Cenozoic.

  • PDF

Paleomagnetic Study on Cretaceous Rocks in Haenam Area (해남지역의 백악기 암석에 대한 고지자기 연구)

  • 임무택;이윤수;강희철;김주용;박인화
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.119-131
    • /
    • 2001
  • A mean characteristic remanent magnetization was obtained for the first time in Korea from volcanic and pyroclastic sedimentary rocks distributed in Haenam Area, located in southwestern part of the Korean Peninsula. The age of the prevailing rocks in this area belongs mostly to Late Cretaceous, with a few exceptions of Early Cretaceous, mainly based on K/Ar whole rock age dating. Characteristic remanent magnetizations of these have both normal and reverse polarities with antipodal direction, which were interpreted to be the primary remanent magnetizations obtained by the ambient Earth's magnetic field at the time of formation of the concerned rocks. The source magnetic minerals of the remanent magnetization has been identified as magnetite. The mean direction of characteristic remanent magnetization obtained from the Late Cretaceous rocks in this study is Dm/Im=21.4 supper(o)/57.1 supper(o) (${\alpha}_{95}=13.4^{\circ}$, k=350.0). The paleomagnetic pole position calculated from this result for the Late Cretaceous, is $72.5^{\circ}N/199.9^{\circ}E$ (dp/dm= $14.2^{\circ}/19.5^{\circ}E$), which matches well with those of 80 Ma ($76.2^{\circ}N/198.9^{\circ}E$) and 90 Ma ($76.2^{\circ}N/200.1^{\circ}E$) of the Eurasian Continent's APWP (Apparent Polar Wander Path). This result strongly indicates that the studied area, belonging to the Eurasian Continent, have suffered very little geotectonic movement after the Late Cretaceous. The deflection of declination of remanence from Early Cretaceous rocks in the study area may indicate that the micro-block was counterclockwisely rotated with vertical axis between the late of Early Cretaceous and the early of Late Cretaceous.

  • PDF

Optimization of Seat belt Load Limiter for Crashworthiness (안전벨트 충돌하중특성 최적화)

  • Seo, bo pil;Choi, sung chul;Kim, beom jung;Han, sung jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.5-10
    • /
    • 2011
  • Under the full frontal crash event, seatbelt system is the most typical and primary restraint device that prevents the second impact between an occupant and vehicle interior parts by limiting the forward motion of an occupant in the vehicle occupant packaging space. Today's restraint systems typically include the three-point seat belt with the pretensioner and the load limiter. A pretensioner preemptively tightens the seat belts removing any slack between a passenger and belt webbing which leads to early restraint of a passenger. After that a load limiter controls level of belt load by releasing the belt webbing to reduce occupant injurys. In this study, load characteristics of load limiters are optimized by the computer simulation with a MADYMO model for a frontal impact against the rigid wall at 56kph and then we suggest performance requirements. We derived optimum load characteristic from the results using four vehicle simulation models represented by the vehicle. Based on the results, we suggest the performance from the results of the second optimization using the simulation considering the design and the standardization. Finally, the performance requirements is verified by the sled tests including the load limiter device for the full vehicle condition.

Design of a morphing flap in a two component airfoil with a droop nose

  • Carozza, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.81-91
    • /
    • 2017
  • The performances of lifting surfaces are particularly critical in specific flight conditions like takeoff and landing. Different systems can be used to increase the lift and drag coefficients in such conditions like slat, flap or ailerons. Nevertheless they increase the losses and make difficult the mechanical design of wing structures. Morphing surfaces are a compromise between a right increase in lift and a reduction of parts movements involved in the actuation. Furthermore these systems are suitable for more than one flight condition with low inertia problems. So, flap and slats can be easily substituted by the corresponding morphing shapes. This paper deals with a genetic optimization of an airfoil with morphing flap with an already optimized nose. Indeed, two different codes are used to solve the equations, a finite volume code suitable for structured grids named ZEN and the EulerBoundary Layer Drela's code MSES. First a number of different preliminary design tests were done considering a specific set of design variables in order to restrict the design region. Then a RANS optimization with a single design point related to the take-off flight condition has been carried out in order to refine the previous design. Results are shown using the characteristic curves of the best and of the baseline reported to outline the computed performances enhancements. They reveal how the contemporary use of a morphing acting on the nose of the main component and the trailing edge of the flap drive towards a total not negligible increment in lift.

Experiment Study for Fracture Characterist of the Ash solid (석탄회 고형물의 파괴특성에 관한 실험적 연구)

  • 조병완;박종빈;김효원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.335-340
    • /
    • 2002
  • By the recently, Environmental pollution is serious by the highly economic growth and expansion of lively country basic industry. Especially, in case of industrial waste and life waste leaped into a pollution source. Also, research for processing of waste and recycling countermeasure is a pressing question on national dimension because it is prohibited an ocean disposal and reclamation. In this study, it looked for fracture characteristic value of recycling a coal ash to decrease environmental pollution by picky and exhaustion of natural resources and to reduce self-weight to prepare for a tall building and earthquake. So a coal ash examined to be possible to do as construction material. It achieved compressive strength test and three points bending test with initial notch depth rate and age for variables to show a basic research data. From the basis of the three points bending test, the fracture parameters - notch sensitivity, fracture energy, initial compliance were experimentally proposed. From the results of the compressive strength test, the elastic modulus was experimentally proposed. Also on the basis of the three points bending test, the fracture parameters - notch sensitivity, fracture energy, initial compliance were experimentally proposed. The results that the strength and fracture energy value are lower than concrete or mortar is described in this paper. Also, it shows that the deflection at fracture decreases as the age increases and the notch sensitivity decrease. However, it is judged to be available to construction material if research is continuously gone forward.

  • PDF

Feed Rate Control for the Head-Feed Thresher (자동탈곡기(自動脱穀機)의 공급율(供給率) 제어(制御)(I) -공급율(供給率)에 따른 부하(負荷) 특성(特性)-)

  • Chung, C.J.;Ryu, K.H.;Choi, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.3
    • /
    • pp.20-31
    • /
    • 1988
  • This study was undertaken to investigate the load characteristics of the head-feed thresher, which may be affected by various factors such as physical properties of grain, thresher design parameters and its operational condition. The study was conducted at an initial step toward developing an automatic feed-rate control system of the head-feed thresher. A microcomputer-based data acquisition system for the load-speed characteristic of the thresher-shaft and the rail-deflection of the feeding device in accordance with a varied feeding thickness was developed. The sensors being developed and used for sensing the torque and speed of the cylinder and the power-input-shaft and the feeding thickness showed a high accuracy. A microcomputer-based data acquisition system developed in this study was assessed as adequate for a rapid acquisition and analysis of data. The effect of the feed-rate on the torque and speed of the thresher shaft, when fed intermittently by bundles, affected not by the rice varieties but by the dryness of threshing material tested. When fed by the continuous constant thickness, the torque and speed of the cylinder due to the increase of the feed-rate or feeding thickness were given by the relation by the second order parabola.

  • PDF

Mechanical Properties of Steel-Fiber Reinforced Concrete (강섬유보강콘크리트의 역학적 거동 특성)

  • 홍성구;권숙국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.81-91
    • /
    • 1989
  • The aims of this study were to determine mechanical properties of steel-fiber reinforced concrete under splitting tensile, flexural and compressive loading, and thus to improve the possible applications of concrete. The major factors experimentally investigated in this study were the fiber content and the length and the diameter of fibers. The major results obtained are summarized as follows : 1.The strength, strain, elastic modulus and energy obsorption capability of steel-fiber reinforced concrete under splitting tensile loading were significantly improved by increasing the fiber content or the aspect ratio. 2.The flexural strength, central deflection, and flexural toughness of steel4iber reinforced beams were significantly improved by increasing the fiber content or the aspect ratio. And flexural behavior characteristic was good at the aspect ratio of about 60 to 75. 3.The strength, strain, and energy absorption capability in compression were increased with the increase of the fiber content. These effects were not so sensitive to the aspect ratio. The energy absorption capability was improved only slightly with the increase of the fiber length. 4.The elastic modulus, transverse strains, and poisson's ratios in compression were not influenced by the fiber content. 5.The steel-fibers were considered to be appropriated as the materials covering the weakness of concrete because the mechanical properties of concrete in tension and flexure were significantly improved by steel-fiber reinforcement.

  • PDF