• 제목/요약/키워드: defense structures

검색결과 278건 처리시간 0.029초

A performance based strategy for design of steel moment frames under blast loading

  • Ashkezari, Ghasem Dehghani
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.155-164
    • /
    • 2018
  • Design of structures subjected to blast loads are usually carried out through nonlinear inelastic dynamic analysis followed by imposing acceptance criteria specified in design codes. In addition to comprehensive aspects of inelastic dynamic analyses, particularly in analysis and design of structures subjected to transient loads, they inherently suffer from convergence and computational cost problems. In this research, a strategy is proposed for design of steel moment resisting frames under far range blast loads. This strategy is inspired from performance based seismic design concepts, which is here developed to blast design. For this purpose, an algorithm is presented to calculate the capacity modification factors of frame members in order to simplify design of these structures subjected to blast loading. The present method provides a simplified design procedure in which the linear dynamic analysis is preformed, instead of the time-consuming nonlinear dynamic analysis. Nonlinear and linear analyses are accomplished in order to establish this design procedure, and consequently the final design procedure is proposed as a strategy requiring only linear structural analysis, while acceptance criteria of nonlinear analysis is implicitly satisfied.

노즈캡 분리장치 성능 연구 (Design and Evaluation of Opening Devices of Separable Nose Cap)

  • 강춘길;이동민;박근수
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.101-108
    • /
    • 2015
  • In this paper, we have proposed a separable nose cap and its opening device to protect a seeker's window from aerodynamic heating and to decrease the drag force on missile body. The nose cap should be promptly deployed to secure the view field of seeker when it is needed. This cap consists of two nose cap structures and separation devices such as pyro puller and pusher. The performance of pyro puller was fully verified through analyses and several kinds of operating tests. We can obtain a sufficient confidence level of the pyro puller through many operating tests under various environments.

원형 실린더 주위의 유동해석을 통한 URANS 난류 모델 성능 비교 (Evaluation of URANS Turbulence Models through the Prediction of the Flow around a Circular Cylinder)

  • 김민재;신지환;권래언;이건철
    • 한국군사과학기술학회지
    • /
    • 제17권6호
    • /
    • pp.861-867
    • /
    • 2014
  • In the present study, the flow around a circular cylinder at $Re=3.6{\time}10^6$ is numerically simulated using URANS approach. The objective of this study is to evaluate the turbulence models(Realizable k-${\varepsilon}$, RNG k-${\varepsilon}$) through the prediction of the unsteady flow characteristics around the cylinder. The time-averaged drag coefficients and vortex shedding phenomenon in the wake region are compared to available experimental data and other numerical results. The simulation with Realizable k-${\varepsilon}$ model is found to be more dissipative due to large eddy viscosity predicted in the wake region while the simulation with RNG k-${\varepsilon}$ model predicts a complex vortex shedding phenomenon with more coherent structures realistically.

FE-BEM 및 SEA 해석 기법을 활용한 샌드위치 복합재 구조물의 전 주파수 대역 음향 해석 (Full-Frequency Band Acoustic Analysis of Sandwich Composite Structure Using FE-BEM and SEA Method)

  • 이대은;이윤규;김홍일;김재영
    • 한국군사과학기술학회지
    • /
    • 제21권4호
    • /
    • pp.422-428
    • /
    • 2018
  • Increase in use of lightweight structures, coupled with the increased acoustic loads resulting from larger and longer range guided missiles, has made missile more susceptible to failures caused by acoustic loads. Thus, accurate prediction of acoustic environment and the response is becoming ever more important for mission success. In this paper, the acoustic response of a sandwich composite skin structure to diffuse acoustic excitation is predicted over a broad frequency range. For the low frequency acoustic analysis, coupled FE-BEM method is used where the structure is modeled using FEM and the interior and exterior fluid is modeled using BEM. For the high frequency region, statistical energy analysis is applied. The predicted acoustic level inside the structure is compared with the result from acoustic test conducted in reverberation chamber, which shows very good agreement.

스파이크가 부착된 유도탄의 공력 가열 해석 (Aerodynamic Heating Analysis of Spike-Nosed Missile)

  • 정석영;윤성준;변우식;안창수
    • 한국군사과학기술학회지
    • /
    • 제7권3호
    • /
    • pp.21-29
    • /
    • 2004
  • Numerical analysis of aerodynamic heating for KPSAM is performed using aerodynamic heating model suitable to KPSAM, which has complex flow field resulting from the spike attached to the dome, such as large separation area and the strong shock/boundary layer interaction region around reattachment point on the dome. The aerodynamic heating model is validated and modified through the comparison between the flight test measurement and the thermal analysis results. TFD temperature sensors are installed on the dome to measure surface temperature during the flight. Computation results, obtained from the heat transfer analysis on the sensors, agree well with flight test data. The aerodynamic heating model provides heat transfer rate into surface as a boundary condition of unsteady 1D/axisymmetric thermal analysis on the missile structure. The axisymmetric thermal analysis using FLUENT is more versatile than the 1D analysis and can be applied to the heating problem related with complex structures and multi-dimensional heat transfer problems such as prediction of temperature rise at contact surface of different materials.

Ultrastructures of Colletotrichum orbiculare in Cucumber Leaves Expressing Systemic Acquired Resistance Mediated by Chlorella fusca

  • Kim, Su Jeung;Ko, Eun Ju;Hong, Jeum Kyu;Jeun, Yong Chull
    • The Plant Pathology Journal
    • /
    • 제34권2호
    • /
    • pp.113-120
    • /
    • 2018
  • Chlorella, one single-cell green algae organism that lives autotrophically by photosynthesis, can directly suppress some plant diseases. The objective of this study was to determine whether pre-spraying with Chlorella fusca suspension could induce systemic acquired resistance (SAR) in cucumber plants against anthracnose caused by Colletotrichum orbiculare. In order to illustrate SAR induced by algae, infection structures in host cells were observed under a transmission electron microscope (TEM). Cytological changes as defense responses of host mesophyll cells such as accumulation of vesicles, formation of sheath around penetration hyphae, and thickness of cell wells adjoining with intracellular hyphae were demonstrated in cucumber leaves. Similar defense responses were also found in the plant pre-treated with DL-3-aminobutyric acid, another SAR priming agent. Images showed that defense response of host cells was scarcely observed in untreated leaf tissues. These cytological observations suggest that C. fusca could induce SAR against anthracnose in cucumber plants by activating defense responses of host cells.

유전 알고리즘을 적용한 잠수함 압력선체 최적 구조설계 (Optimal Design of Submarine Pressure Hull Structures Using Genetic Algorithm)

  • 조윤식;백점기
    • 대한조선학회논문집
    • /
    • 제54권5호
    • /
    • pp.378-386
    • /
    • 2017
  • In this paper, a method is presented for the optimal design of submarine pressure hull structures by taking advantage of genetic algorithm techniques. The objective functions and design constraints in the process of structural optimization are based on the ultimate limit states of hull structures. One of the benefits associated with the utilization of genetic algorithm is that the optimization process can be completed within short generations of design variables for the pressure hull structure model. Applied examples confirm that the proposed method is useful for the optimal design of submarine pressure hull structures. Details of the design procedure with applied examples are documented. The conclusions and insights obtained from the study are summarized.

TWB 판넬의 기계적특성 평가에 관한 연구 (A Study on the Evaluation of Mechanical Characteristics for Tailor Welded Blank Panel)

  • 천창환;한창석
    • 열처리공학회지
    • /
    • 제23권4호
    • /
    • pp.183-190
    • /
    • 2010
  • There are many methods to reduce the weight and the cost of the automobile body, among them, Tailor Welded Blank (TWB) is new welding method applied to body structure. It is necessary to evaluate mechanical properties of TWB structures or sheets for the application to automobile body parts. In this study, the stiffness of T-type and L-type joint structures, composite of TWB panel, which simplified two portions of side structure in automobile body were investigated. Additionally, the fatigue properties of TWB panels were obtained. Two types of welding technologies, laser and mash seam welding, were used to join mild panels with different thickness. This results are compared with conventional structures. The results are as follows: 1) The stiffness of joint structures, composite of TWB panel, is approximately 17% higher than that of conventional ones. 2) The location of welding line in TWB had a effect on the in plane bending stiffness, but not on the out of plane bending stiffness. 3) In terms of welding technology type, the mash seam welding show higher stiffness than the laser welding for in plane bending stiffness. But minimal differences in both types are revealed for out of plane bending stiffness. 4) The fatigue strength, composite of TWB panel, is lower than that of base steel. It is thought that defects in the welding zone had the action of notch in the fatigue test.

다자유도 곡선 맞춤법과 RKU 기법을 이용한 점탄성 감쇠재의 탄성 및 손실계수 추정방법 연구 (Study of the Measurement of Young's Modulus and Loss Factor for a Viscoelastic Damping Material Using a Multi Degree of Freedom Curve Fitting Method and RKU Equation)

  • 민천홍;박한일;배수룡;전재진
    • 한국해양공학회지
    • /
    • 제25권1호
    • /
    • pp.67-72
    • /
    • 2011
  • Offshore structures, such as a platform, a buoy, or a floating vessel, are exposed to several dynamic loads, and viscoelastic damping material is used to reduce the vibration of offshore structures. It is important to know the properties of viscoelastic materials because loss factor and Young's modulus of the viscoelastic damping material are dependent on frequency and temperature. In this study, an advanced technique for obtaining accurate loss factor and Young's modulus of the viscoelastic damping material is introduced based on a multi degree of freedom curve-fitting method and the RKU (Ross-Kerwin-Ungar) equations. The technique is based on a modified experimental procedure from ASTM E 756-04. Loss factor and Young's modulus of the viscoelastic damping material are measured for different temperatures by performing the test in a temperature-controlled vibration measurement room where temperature varies from 5 to 45 degrees Celsius.

Histological and Cytological Changes Associated with Susceptible and Resistant Responses of Chili Pepper Root and Stem to Phytophthora capsici Infection

  • Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제25권2호
    • /
    • pp.113-120
    • /
    • 2009
  • Microscopic study of chili pepper (Capsicum annuum L.) infected with Phytophthora capsici, causing Phytophthora blight of chili pepper, was conducted to compare histological and cytological characteristics in the root and stem of susceptible (C. annuum cv. Bugang) and resistant (C. annuum cv. CM334) pepper cultivars. The susceptible pepper roots and stems were extensively penetrated and invaded by the pathogen initially into epidermal cells and later cortical and vascular cells. Host cell walls adjacent to and invaded by the infecting hyphae were partially dissolved and structurally loosened with fine fibrillar materials probably by cell wall-degrading enzymes of the pathogen. In the resistant pepper, the pathogen remained on root epidermal surface at one day after inoculation, embedded and captured in root exudation materials composed of proteins and polysaccharides. Also the pathogen appeared to be blocked in its progression at the early infection stages by thickened middle lamellae. At 3 days after inoculation, the oomycete hyphae were still confined to epidermal cells of the root and at most outer peripheral cortical cells of the stem, resulting from their invasion blocked by wound periderms formed underneath the infection sites and/or cell wall appositions bounding the hyphal protrusions. All of these aspects suggest that limitation of disease development in the resistant pepper may be due to the inhibition of the pathogen penetration, infection, invasion, and colonization by the defense structures such as root exudation materials, thickened middle lamellae, wound peridems and cell wall appositions.