• Title/Summary/Keyword: defect factor

Search Result 393, Processing Time 0.03 seconds

Effects of Suspension Composition on Defects in Aqueous Tape Casting of Alumina Ceramics: A Rheological Study

  • Shin, Hyo-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • In aqueous alumina tape casting, the effects of altering the composition of the suspensions, the binders and the casting thickness were studied. The rheological behavior of the suspensions and the defects of the dried tapes were examined and the relationships between them are discussed. The changes in the defect regions reported in the previous paper were related with the rheological properties with variations of the binder, the composition and the casting thickness. The shear thinning factor increased with the organic content and the solid content (the decrease of water content). The apparent viscosity increased with the shear thinning factor. The relation between the shear thinning factor and the log apparent viscosity was similar for all binder types. In the relation between the defect free region and the rheological properties, the defect free region became narrower with increasing casting thickness. The defect free region is independent of binder type. Therefore, the thicker tape is more difficult to produce in aqueous alumina tape casting. Knowledge of the rheological properties of the suspensions could help Predict the defect type and the possibility of defect free dried tapes.

A Study on the Relative Importance of Quality Management Items through the Defect Analysis in the Landscape Construction Process (조경시설공사의 시공품질 분석을 통한 품질관리항목의 중요도 연구)

  • 이상석;최기수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.3
    • /
    • pp.1-11
    • /
    • 1997
  • This study aims to estimate the relative importance of quality management items through the defect analysis in the landscape construction process. The RIQMI are decided by the defect coefficient and it's cause weight. The defect items in the landscape construction process were classified by 56 items based on the classification form of '96 landscape architectural construction standard and the cause pattern were categorized 4 types as design, material, construction, and environment factors. To analyze the defect coefficient and the aucse weight by defect, the researcher surveyed the questionnaires on the 103 engineers and the 31 experts on the landscape architectural construction. The result of this study are as follows. The relative importance by facilities pattern turn out to be much higher construction, material fator than design. environment factor in wood facilities, paving facilities, and steel facilities, the RIQMI is very high in timber crack, timber vending, faulty of timber against decay, welding faulty of steel facilities in material factor, and timber crack, faulty of timber against decay, finish faulty of steel facilities, welding faulty of steel facilities in construction factor.

  • PDF

A Study on the Governing Factor of Fatigue Limit in Austempered Ductile Iron (오스템퍼링 구상흑연주철의 피로한도 지배인자에 관한 연구)

  • 정회원;김진학
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.221-229
    • /
    • 1999
  • We examined the governing factors of fatigue limit in annealed and austempered ductile iron specimens machined micro hole(dia.<0.4mm) in rotary bending fatigue test. Also, the quantitative relationship between fatigue limit and maximum defect size in specimens was investigated. Artificial defect(micro-pit type, dia.<0.4mm) on specimen surface did not bring about an obvious reduction of fatigue limit in austempered ductile iton(ADI) as compared with annealed ductile iron. According to the investigation of ${\sqrt{area}}_c$ which is the critical defect size to crack initiation at artificial defect, ${\sqrt{area}}_c$ of ADI was larger than that of annealed ductile iron. This shows that the situation of crack initiation at artificial defect in ADI is more difficult in comparison with annealed ductile iron. Maximum defect size is one of the important parameters to predict fatigue limit. And, the quantitative relationship, between the fatigue limit ${\sigma}_{\omega}$ and the maximum defect size ${\sqrt{area}}_{max}$ can be expressed to ${\sigma}_{\omega}^n{\cdot}{\sqrt{area}}_{max}=C_2$ where, $C_2$ are constant. Moreover, it is possible to explain the difference in fatigue limit between, austempered and annealed ductile iron by introducing the parameter ${\delta}(=N_{sg}/N_{total})$in a plain spectimen.

  • PDF

A Study on the Effect of Micro Defect on Stress Intensity Factor of Through-Crack by Boundary Element Method (경계요소법을 이용한 관통균열의 응력확대계수에 미치는 미소결함의 영향에 관한 연구)

  • Seong, Gi-Deuk;Yang, Won-Ho;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.560-566
    • /
    • 2000
  • Many researchers have dealt with the problems of fracture mechanics. Generally, these researches are concerned with crack in isotropic material without other micro defects. Actual structure, however, may contain micro defects as well as crack in manufacture processing or operation. If it contains mi defects near a crack, some different characteristics will be appear in fracture behaviors of the crack. This study examines the effect of the micro defect on stress intensity factor of center slant crack rectangular plate subjected to uniform uniaxial tensile stress. In this study, boundary element method(BEM) is used for analysis in stress intensity factor(SIF).

A study on the growth behaviors of surface fatigue crack initiated from a small-surface defect of 2024-T3 and brass (2024-T3 및 황동의 작은 표면결함재의 피로균열 성장특성에 관한 연구)

  • 서창민;오명석
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.53-64
    • /
    • 1996
  • In this paper, rotating bending fatigue tests have been carried out to investigate the growth behabiors of surface fatigue crack initiated from a small artificial surface defect, that might exist in real structures, on 2024-T3 and 6:4 brass. The test results are analysed in the viewpoints of both strength of materials and fracture mechanics, it can be concluded as follows. The effect of a small artificial surface defect upon the fatigue strength is very large. The sensitivity of 2024-T3 on the defect is higher than that of 6:4 brass. The growth behavior of the surface fatigue crack of 2024-T3 is different from that of 6:4 brass. The growth rate of the surface fatigue crack of 2024-T3 is considerably rapid in the early stage of the fatigue life and apt to decrease in the later stage. It was impossible to establish a unifying approach in the analysis of crack growth begabior of 2024-T3 and 6:4 brass using the maximum stress intensity factor because of their dependence on stress level. But if the elastic strain and cyclic total strain intensity factor range were applied to obtain the growth rate of surface fatigue cracks of the materials, the data were found to be nearly coincided.

  • PDF

The Effect of Defect Location Near a Circular Hole Notch on the Relationship Between Crack Growth Rate (da/dN) and Stress Intensity Factor Range (δK) - Comparative Studies of Fatigue Behavior in the Case of Monolithic Al Alloy vs. Al/GFRP Laminate - (원공노치 인근에 발생한 결함의 위치변화가 균열성장률(da/dN) 및 응력확대계수범위(δK)의 관계에 미치는 영향 - 단일재 알루미늄과 Al/GFRP 적층재의 피로거동 비교 -)

  • Kim, Cheol-Woong;Ko, Young-Ho;Lee, Gun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.344-354
    • /
    • 2007
  • The objective of this study is to investigate the effect of arbitrarily located defect around the circular hole in the aircraft structural material such as Al/GFRP laminates and monolithic Al alloy sheet under cyclic bending moment. The fatigue behavior of these materials may be different due to the defect location. Material flaws in the from of pre-existing defects can severely affect the fatigue crack initiation and propagation behavior. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic Al alloy and Al/GFRP laminates under cyclic bending moment. The fatigue behavior i.e., the stress concentration factor($K_t$), the crack initiation life($N_i$), the relationship between crack length(a) and cycles(N), the relationship between crack growth rate(da/dN) and stress intensity factor range(${\Dalta}K$) near a circular hole are considered. Especially, the defects location at ${\theta}_1=0^{\circ}\;and\;{\theta}_2=30^{\circ}$ was strongly effective in stress concentration factor($K_t$) and crack initiation life($N_i$). The test results indicated the features of different fatigue crack propagation behavior and the different growing delamination shape according to each location of defect around the circular hole in Al/GFRP laminates.

Defect Severity-based Ensemble Model using FCM (FCM을 적용한 결함심각도 기반 앙상블 모델)

  • Lee, Na-Young;Kwon, Ki-Tae
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.12
    • /
    • pp.681-686
    • /
    • 2016
  • Software defect prediction is an important factor in efficient project management and success. The severity of the defect usually determines the degree to which the project is affected. However, existing studies focus only on the presence or absence of a defect and not the severity of defect. In this study, we proposed an ensemble model using FCM based on defect severity. The severity of the defect of NASA data set's PC4 was reclassified. To select the input column that affected the severity of the defect, we extracted the important defect factor of the data set using Random Forest (RF). We evaluated the performance of the model by changing the parameters in the 10-fold cross-validation. The evaluation results were as follows. First, defect severities were reclassified from 58, 40, 80 to 30, 20, 128. Second, BRANCH_COUNT was an important input column for the degree of severity in terms of accuracy and node impurities. Third, smaller tree number led to more variables for good performance.

A Study on Extraction of Defect Causal Variables for Defect Management in Financial Information System (금융정보시스템의 장애관리를 위한 장애요인변수 추출에 관한 연구)

  • Kang, Tae-Hong;Rhew, Sung-Yul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.6
    • /
    • pp.369-376
    • /
    • 2013
  • Finance Information System is critical national infrastructure. Therefore it is important to select variables of defect causal factor for the system defect management effectively. We research and analyze detected errors in A Company's Finance Information System for three years. In the result of research and analysis, we have selected 9 variables of defect factor: the trading volume, the fluctuation of KOSDAQ index, and the number of public announcements, etc. Then we have assumed that these variables affect real system errors and analyzed correlation between the hypothesis and the detected system errors. After analyzing, we have extracted the trading volume, the number of orders and fills, changing tasks, and the fluctuations of NASDAQ index as valid variables of defect factor. These variables are proposed for failure prediction model as the variables to manage defects in the finance information system afterward.

Analysis of Equipment Factor for Smart Manufacturing System (스마트제조시스템의 설비인자 분석)

  • Ahn, Jae Joon;Sim, Hyun Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.168-173
    • /
    • 2022
  • As the function of a product is advanced and the process is refined, the yield in the fine manufacturing process becomes an important variable that determines the cost and quality of the product. Since a fine manufacturing process generally produces a product through many steps, it is difficult to find which process or equipment has a defect, and thus it is practically difficult to ensure a high yield. This paper presents the system architecture of how to build a smart manufacturing system to analyze the big data of the manufacturing plant, and the equipment factor analysis methodology to increase the yield of products in the smart manufacturing system. In order to improve the yield of the product, it is necessary to analyze the defect factor that causes the low yield among the numerous factors of the equipment, and find and manage the equipment factor that affects the defect factor. This study analyzed the key factors of abnormal equipment that affect the yield of products in the manufacturing process using the data mining technique. Eventually, a methodology for finding key factors of abnormal equipment that directly affect the yield of products in smart manufacturing systems is presented. The methodology presented in this study was applied to the actual manufacturing plant to confirm the effect of key factors of important facilities on yield.

Non-Destructive Evaluation of Separation and Void Defect of a Pneumatic Tire by Speckle Shearing Interferometry

  • Kim, Koung-Suk;Kang, Ki-Soo;Jung, Hyun-Chul;Ko, Na-Kyong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1493-1499
    • /
    • 2004
  • This paper describes the speckle shearing interferometry, a non-destructive optical method, for quantitative estimation of void defect and monitoring separation defect inside of a pneumatic tire. Previous shearing interferometry has not supplied quantitative result of inside defect, due to effective factors. In the study, factors related to the details of an inside defect are classified and optimized with pipeline simulator. The size and the shape of defect can be estimated accurately to find a critical point and also is closely related with shearing direction. The technique is applied for quantitative estimation of defects inside of a pneumatic tire. The actual traveling tire is monitored to reveal the cause of separation and the starting points. And also unknown void defects on tread are inspected and the size and shape of defects are estimated which has good agreement with the result of visual inspection.