• Title/Summary/Keyword: default coefficient

Search Result 19, Processing Time 0.038 seconds

Calibration of Hargreaves Equation Coefficient for Estimating Reference Evapotranspiration in Korea (우리나라 기준증발산량 추정을 위한 Hargreaves 공식의 계수 보정)

  • Hwang, Seon-ah;Han, Kyung-hwa;Zhang, Yong-seon;Cho, Hee-rae;Ok, Jung-hun;Kim, Dong-Jin;Kim, Gi-sun;Jung, Kang-ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.238-249
    • /
    • 2019
  • The evapotranspiration is estimated based on weather factors such as temperature, wind speed and humidity, and the Hargreaves equation is a simple equation for calculating evapotranspiration using temperature data. However, the Hargreaves equation tends to be underestimated in areas with wind speeds above 3 m s-1 and overestimated in areas with high relative humidity. The study was conducted to determine Hargreaves equation coefficient in 82 regions in Korea by comparing evapotranspiration determined by modified Hargreaves equation and the Penman-Monteith equation for the time period of 2008~2018. The modified Hargreaves coefficients for 50 inland areas were estimated to be 0.00173~0.00232(average 0.00196), which is similar to or lower than the default value 0.0023. On the other hand, there are 32 coastal areas, and the modified coefficients ranged from 0.00185 to 0.00303(average 0.00234). The east coastal area was estimated to be similar to or higher than the default value, while the west and south coastal areas showed large deviations by area. As results of estimating the evapotranspiration by the modified Hargreaves coefficient, root mean square error(RMSE) is reduced from 0.634~1.394(average 0.857) to 0.466~1.328(average 0.701), and Nash-Sutcliffe Coefficient(NSC) increased from -0.159~0.837(average 0.647) to -0.053~0.910(average 0.755) compared with original Hargreaves equation. Therefore, we confirmed that the Hargreaves equation can be overestimated or underestimated compared to the Penman-Monteith equation, and expected that it will be able to calculate the high accuracy evapotranspiration using the modified Hargreaves equation. This study will contribute to water resources planning, irrigation schedule, and environmental management.

ASSESSMENT OF CONDENSATION HEAT TRANSFER MODEL TO EVALUATE PERFORMANCE OF THE PASSIVE AUXILIARY FEEDWATER SYSTEM

  • Cho, Yun-Je;Kim, Seok;Bae, Byoung-Uhn;Park, Yusun;Kang, Kyoung-Ho;Yun, Byong-Jo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.759-766
    • /
    • 2013
  • As passive safety features for nuclear power plants receive increasing attention, various studies have been conducted to develop safety systems for 3rd-generation (GEN-III) nuclear power plants that are driven by passive systems. The Passive Auxiliary Feedwater System (PAFS) is one of several passive safety systems being designed for the Advanced Power Reactor Plus (APR+), and extensive studies are being conducted to complete its design and to verify its feasibility. Because the PAFS removes decay heat from the reactor core under transient and accident conditions, it is necessary to evaluate the heat removal capability of the PAFS under hypothetical accident conditions. The heat removal capability of the PAFS is strongly dependent on the heat transfer at the condensate tube in Passive Condensation Heat Exchanger (PCHX). To evaluate the model of heat transfer coefficient for condensation, the Multi-dimensional Analysis of Reactor Safety (MARS) code is used to simulate the experimental results from PAFS Condensing Heat Removal Assessment Loop (PASCAL). The Shah model, a default model for condensation heat transfer coefficient in the MARS code, under-predicts the experimental data from the PASCAL. To improve the calculation result, The Thome model and the new version of the Shah model are implemented and compared with the experimental data.

Development of CRS-Korea II and its Application to Setting the Priority of Toxic Chemicals for Local Provinces (개선된 화학물질 우선순위 선정 기법(CRS-Korea II)과 그 활용을 통한 지역별 유독물 우선순위의 도출)

  • Choi Seung Pil;Park Hoa Sung;Lee Dong Soo;Shin Yong Seung;Kim Ye Shin;Shin Dong Chun
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.311-325
    • /
    • 2005
  • A chemical ranking and scoring system, CRS - Korea, has recently been developed and proposed to use to prioritize on a screening level the toxic chemicals for monitoring and risk assessment. As CRS-Korea requires rigorous assessments prior to its wide application, an assessment was conducted in this study by examining the contribution of individual parameter score to the final chemical score or ranking. The sensitivity of the system to the default values for various parameters of missing data was also tested. The chemical ranking/score was round to depend primarily on the score of a single parameter, i. e., the chemical release, while toxicity scores show little correlation with the priority Further analysis indicated that the dominating effect of the chemical release results from i) its multiplicative relationship with the other two exposure parameters (biodegradation and persistent) and ii) the fact that a maximum score of 10 was assigned to the chemical release parameter while 5 was assigned for all others. AE the fraction of the data that are missing exceeded $70\%$ for various toxicity parameters at compared to less than $10\%$ for exposure parameters, the sensitivity of the ranking to the default value was not significant (rank correlation coefficient = 0.98) for toxicity parameters. Bated on this assessment, an improved CRS system (CRS - Korea II) was proposed in which the impact of the chemical release was properly adjusted by changing the multiplicative relationship to additive one and the maximum score to 5. Chemical priority was derived for each of 16 provinces by using CRS-Korea II. The chemical priority was found to significantly vary among the provinces. It was concluded that not only the national chemical priority but the local chemical priority should be taken into account in setting the nationwide chemical monitoring and risk assessment strategy.

Property Analysis of Municipal Solid Waste and Estimation of CO2 Emissions from Waste Incinerators (생활폐기물 특성 분석 및 소각시설의 CO2 배출량 평가)

  • Kim, Byung-Soon;Kim, Shin-Do;Kim, Chang-Hwan;Lee, Tae-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.657-665
    • /
    • 2010
  • Carbon dioxide ($CO_2$) is known to be a major greenhouse gas partially emitted from waste combustion facilities. According to the greenhouse gas emission inventory in Korea, the quantity of the gas emitted from waste sector in 2005 represents approximately 2.5 percent of all domestic greenhouse gas emission. Currently, the emission rate of greenhouse gas from the waste sector is relatively constant partly because of both the reduced waste disposal in landfills and the increased amounts of waste materials for recycling. However, the greenhouse gas emission rate in waste sectors is anticipated to continually increase, mainly due to increased incineration of solid waste. The objective of this study was to analyze the property of Municipal Solid Waste (MSW) and estimate $CO_2$ emissions from domestic MSW incineration facilities. The $CO_2$ emission rates obtained from the facilities were surveyed, along with other two methods, including Tier 2a based on 2006 IPCC Guideline default emission factor and Tier 3 based on facility specific value. The $CO_2$ emission rates were calculated by using $CO_2$ concentrations and gas flows measured from the stacks. Other parameters such as waste composition, dry matter content, carbon content, oxidation coefficient of waste were included for the calculation. The $CO_2$ average emission rate by the Tier 2a was 34,545 ton/y, while Tier 3 was 31,066 ton/y. Based on this study, we conclude that Tier 2a was overestimated by 11.2 percent for the $CO_2$ emission observed by Tier 3. Further study is still needed to determine accurate $CO_2$ emission rates from municipal solid waste incineration facilities and other various combustion facilities by obtaining country-specific emission factor, rather than relying on IPCC default emission factor.

Calibration of Activated Sludge Model No. 1 using Maximum Respiration Rate: Maximum Autotrophs Specific Growth Rate (최대 호흡율을 이용한 활성슬러지 모델 No.1 보정: 자가영양균 최대비성장율 추정)

  • Choi, E.H.;Buys, B.;Temmink, H.;Klapwijk, B.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.409-413
    • /
    • 2005
  • A method to estimate the autotrophic maximum specific growth rate is presented in this paper. First of all, the concentration of nitrifier is simulated based on the amount of N nitrified, the sludge age and the default value for the decay coefficient. Secondly the OUR of the sludge with access of ammonia is measured. The maximum specific growth rate can be calculated as ${\mu}_{max,A}\;=\;OUR_{max,A}/Y_A$. It was demonstrated that the maximum specific growth rate of autotrophic biomass is not a constants but a time variable parameter. It is concluded that using $OUR_{max,A}$ for dynamic estimating maximum specific growth rate is a good approach and that using a constant value for the maximum specific growth rate over a longer period of time could not predict the performance of activated sludge plants.

When Evaluated Using CT Imaging Phantoms AAPM Phantom Studies on the Quantitative Analysis Method (AAPM Phantom을 이용한 CT 팬텀 영상 평가 시 정량적 분석 방법에 관한 연구)

  • Kim, Young-Su;Ye, Soo-Young;Kim, Dong-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.592-600
    • /
    • 2016
  • AAPM CT performance for special medical equipment quality control checks using a standard phantom for evaluation, using the evaluator's subjective assessment as to minimize errors due computerized assessment program to evaluate their usefulness. Phantom for evaluation AAPM CT Performance Phantom: was used, the default shooting conditions are the same as quality control checks. And, we use IMAGE J to evaluate the program. Quantitative evaluation with CT attenuation coefficient and the noise measurement, the uniformity measurement, the slice thickness measurement, contrast resolution of the measurement, a phantom image of the spatial resolution determined by the evaluation program is evaluated as self-extracting the result after processing the image, CT uniformity measurement for the evaluation that was smaller and the standard deviation of a video image processing more uniform slice thickness measurements it is difficult to evaluate due to the difference of the ratio of the measured value of the phantom image. Contrast resolution was measured cylindrical diameter 6th evaluate the shape of a circle obtained a mean value and a standard deviation of diameters, the spatial resolution of the group of source, including acceptance criteria automatically extracted result as a result of both the number of the extracted circularIt appeared. Evaluate the source image and video processing, and video to qualitative evaluation by gross were processed video image is shown excellent results. If the evaluators in order to minimize the errors of subjective judgment based on the results of the above should be done with a quantitative evaluation and qualitative evaluation utilizes a computerized assessment program is considered that further evaluation be made more efficient.

Numerical Study of the Heat Removal Performance for a Passive Containment Cooling System using MARS-KS with a New Empirical Correlation of Steam Condensation (새로운 응축열전달계수 상관식이 적용된 MARS-KS를 활용한 원자로건물 피동냉각계통 열제거 성능의 수치적 연구)

  • Jang, Yeong-Jun;Lee, Yeon-Gun;Kim, Sin;Lim, Sang-Gyu
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-35
    • /
    • 2018
  • The passive containment cooling system (PCCS) has been designed to remove the released decay heat during the accident by means of the condensation heat transfer phenomenon to guarantee the safety of the nuclear power plant. The heat removal performance of the PCCS is mainly governed by the condensation heat transfer of the steam-air mixture. In this study, the heat removal performance of the PCCS was evaluated by using the MARS-KS code with a new empirical correlation for steam condensation in the presence of a noncondensable gas. A new empirical correlation implemented into the MARS-KS code was developed as a function of parameters that affect the condensation heat transfer coefficient, such as the pressure, the wall subcooling, the noncondensable gas mass fraction and the aspect ratio of the condenser tube. The empirical correlation was applied to the MARS-KS code to replace the default Colburn-Hougen model. The various thermal-hydraulic parameters during the operation of the PCCS follonwing a large-break loss-of-coolant-accident were analyzed. The transient pressure behavior inside the containment from the MARS-KS with the empirical correlation was compared with calculated with the Colburn-Hougen model.

Leachate Concentration to Groundwater Considering Source Depletion for Risk Assessment in Vadose Zone of Contaminated Sites (오염부지 위해성평가 시 불포화대 오염원 고갈을 고려한 토양유출수 농도 결정)

  • Chang, Sun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.583-592
    • /
    • 2020
  • This study assessed source depletion in the vadose zones of contaminated sites. The possible range of infiltration rate in Korea was statistically analyzed. The results showed a trend of decreasing leachate concentration of 13 pollutants used for risk assessment. Among them, benzene, ethylbenzene, toluene, and xylene showed a lower leachate concentration in groundwater over time due to their low distribution coefficient and also possible biodegradation effects. The average values of the relative concentration could be taken as a default index due to a very small range of uncertainties. In the case of heavy metals, it was shown that the leachate concentration in a pollutant does not decrease over time. Considering the annually different infiltration, a site-specific source-depletion scenario was applied to Cheongju in North Chungcheong Province. The result was expressed as a time series of the relative concentration of the leachate concentration, and this was compared to the trend by averaged Korean infiltration. Finally, an open-source code that used Python was used to help calculate the leachate concentration by this site-specific infiltration scenario.

Evaluation of improvement effect on the spatial-temporal correction of several reference evapotranspiration methods (기준증발산량 산정방법들의 시공간적 보정에 대한 개선효과 평가)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.701-715
    • /
    • 2020
  • This study compared several reference evapotranspiration estimated using eight methods such as FAO-56 Penman-Monteith (FAO PM), Hamon, Hansen, Hargreaves-Samani, Jensen-Haise, Makkink, Priestley-Taylor, and Thornthwaite. In addition, by analyzing the monthly deviations of the results by the FAO PM and the remaining seven methods, monthly optimized correction coefficients were derived and the improvement effect was evaluated. These methods were applied to 73 automated synoptic observation system (ASOS) stations of the Korea Meteorological Administration, where the climatological data are available at least 20 years. As a result of evaluating the reference evapotranspiration by applying the default coefficients of each method, a large fluctuation happened depending on the method, and the Hansen method was relatively similar to FAO PM. However, the Hamon and Jensen-Haise methods showed more large values than other methods in summer, and the deviation from FAO PM method was also large significantly. When comparing based on the region, the comparison with FAO PM method provided that the reference evapotranspiration estimated by other methods was overestimated in most regions except for eastern coastal areas. Based on the deviation from the FAO PM method, the monthly correction coefficients were derived for each station. The monthly deviation average that ranged from -46 mm to +88 mm before correction was improved to -11 mm to +1 mm after correction, and the annual average deviation was also significantly reduced by correction from -393 mm to +354 mm (before correction) to -33 mm to +9 mm (after correction). In particular, Hamon, Hargreaves-Samani, and Thornthwaite methods using only temperature data also produced results that were not significantly different from FAO PM after correction. It can be also useful for forecasting long-term reference evapotranspiration using temperature data in climate change scenarios or predicting evapotranspiration using monthly or seasonal temperature forecasted values.