• Title/Summary/Keyword: deep-seabed test miner

Search Result 3, Processing Time 0.018 seconds

Development of Operating S/W and DBMS for Deep-sea Manganese Nodule Miner (심해저 망간단괴 집광기의 운영 소프트웨어 및 데이터베이스 관리시스템 개발)

  • Park, Soung-Jae;Yeu, Tae-Kyeong;Yoon, Suk-Min;Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su;Kim, Sang-Bong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.229-236
    • /
    • 2008
  • The deep-sea miner is the tracked vehicle system which drives on the deep-seabed and gathers a manganese nodules. The miner is operated by remote control in real-time by the station of surface vessel. So operating S/W is a important part of miner remote operating. At present, the test miner has been designed and manufactured for near-shore sea-test. The test miner consists of mechanical parts, and electric-electronic parts. Because those parts should be controled and monitored remotely, operating S/W for control and monitoring is necessary by all means. In this paper, real-time operating S/W for a control and monitoring of the test miner was designed and developed using PXI, embedded controller and LabVIEW. This real-time operating S/W was developed for an efficient test of test miner in a near seabed area. Moreover, database management system(DBMS) was developed too for the data management of test miner monitoring using MS SQL and LabVIEW.

Reliability-based Design Optimization on Mobility of Deep-seabed Test Miner Using Censored Data of Current Speed (중도절단 해류속도자료를 이용한 심해저 시험집광기의 주행성능에 관한 신뢰성 기반 최적설계)

  • Park, Sanghyun;Cho, Su-Gil;Lim, Woochul;Kim, Saekyeol;Choi, Sung Sik;Lee, Minuk;Choi, Jong-Su;Kim, Hyung-Woo;Lee, Chang-Ho;Hong, Sup;Lee, Tae Hee
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.487-494
    • /
    • 2014
  • Deep-seabed test miner operated by a self-propelled mining system moving on soft soil is an essential device to secure floating and towing performances. The performances of the tracked vehicle are seriously influenced by noise factors such as the shear strength of the seafloor, bottom current, seafloor slope, speed of tracked vehicle, reaction forces of flexible hose, steering ratio, etc. Due to uncertainties related to noise factors, the design of a deep-sea manganese nodules test miner that satisfies target reliabilities is difficult. Therefore, reliability-based design optimization (RBDO) is required to guarantee system reliability under circumstances where uncertainties related to noise factors prevail. Among noise factors, the bottom current, a bimodal distribution, is censored due to the observation limit of measurement devices. Therefore, estimated distribution of the bottom current is inaccurate without considering these characteristics and the result of RBDO cannot be guaranteed. In this paper, we define censored data as unknown values over the limit of observation. If this data is estimated by using Akaike information criterion (AIC) that cannot consider the characteristics of censored data, the distribution of estimated data cannot guarantee accurate reliability. Therefore, censored AIC that can consider the characteristics of data is used to estimate accurate distribution of the bottom current. Finally, RBDO, under circumstances where uncertainties related to noise factors combined censored data are present, is performed on the mobility of a deep-sea manganese nodules test miner.

Development of Polymetallic Nodules in the NE Equatorial Pacific: Past, Present and Future (심해저 망간단괴 개발의 현황과 미래)

  • Chi, Sang Bum;Hong, Sup
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.367-371
    • /
    • 2014
  • In early 1990s, the Korean government has launched a deep-sea research program to secure the stable long-term supply of strategic metallic minerals including Cr, Cu and Ni. Through the pioneering surveys, Korea registered $150,000km^2$ of Mn-nodule field in the Clarion-Clipperton area, the NE equatorial Pacific to the international sea-bed authority (ISA) in 1994. Following the ISA exploration code, the final exclusive exploration area of $75,000km^2$ was assigned in 2002, based on results of eight-year researches of chemico-physical properties of nodules, bottom profiles and sediment properties. Since that time, environmental studies, mining technical developments including robot miner and lifting system and establishment of smelting systems were accompanied with the detailed geophysical studies to decipher the priori mining area until 2009. Major points of the recent Korea Mn-nodule program are deployed on a commercial scale until 2015. In order to meet the goals, we developed a 1/5 scaled robot miner compared to commercial one in 2012 and performed a mining test at the water depth of 1,370 m in 2013. In addition, detailed 25,000 scaled mining maps in the priori area, which can provide operation roots of the miner, will be prepared and an environmental-friendly mining strategy will be pursued based on the environmental impact test and environmental monitoring.