• Title/Summary/Keyword: deep-sea sediments

Search Result 111, Processing Time 0.02 seconds

Late Quaternary Stratigraphy and the Heavy Minerals from Deep Cored Sediments along the Coastal Deposits, Songji Lagoon, Eastern Coast, Korea (강원도 동해안(송지호) 해안퇴적층의 제4기 후기 층서와 중광물)

  • 박용안;박영후
    • The Korean Journal of Quaternary Research
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2001
  • The deep cored sediments of the beach spit deposit in the inlet of the Songji lagoon(lake) have been studied in terms of the late Quarternary stratigraphy and relationship of the Holocene sea-level curve. Furthermore, the total content of heavy mineral sands from the established stratigraphic units(Unit I, II and III) varies due to the changes of depositional environments from continental to marine condition.

  • PDF

Macrozoobenthic Communities of the Deep Sea Sediments in the Northeastern Pacific Ocean (북동태평양 심해저 퇴적물에 서식하는 대형저서동물의 군집)

  • Choi, Jin-Woo;Kim, Dong-Sung;Hyun, Jung-Ho;Lee, Chang-Hoon
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.367-376
    • /
    • 2004
  • Macrobenthos were collected at 7 stations located from $5^{\circ}N$ to $10^{\circ}N$ with 1o interval along the longitude of $131^{\circ}W$ using a box corer with sampling area of $0.25\;m^2$ in July, 1999. In order to see the vertical distribution of macrobenthos in sediments, each subcore sample was divided into 5 layers with 1 cm interval up to 6 cm depth. Each subcore sample was sieved through 0.3 mm mesh screen and fixed with 10% Rose Bengal added formalin. A total of 22 faunal groups in 11 phyla were sampled and the average density was $959\;{\pm}\;584\;ind./m^2$. Foraminiferans comprised 34.8% of total specimens were the most abundant fauna, and followed by nematodes (27.5%), polychaete worms (15.7%), and benthic harpactoid copepods (10.4%). A latitudinal trend was shown in the distribution of macrobenthos; the maximum density of $1,832\;ind./m^2$ appeared at station N06 and the most poverished community occurred at station N09 with the density of $248\;ind./m^2$. The density of typical macrofaunal taxa except foraminiferans and nematods was $116\;ind./m^2$. In the vertical distribution of macrobenthos, more than 70% of macrobenthos occurred in the upper 2 cm layer, and upper 4 cm layer contained about 90% of macrofauna. Polychaete worms consisted of 22 families, and cirratulid and paraonid worms were dominant polychaete species. The prominant feeding guilds of polychaete worms were SDT (surface, descretely motile, tenaculate feeding) and SMX (surface, motile, non-jawed); they comprised more than 50% of polychaete abundance. These feeding guilds of polychaete worms suggests that the deep sea benthos should be well adapted the newly settled deposits from water column, but this should be clarified by the further studies.

A Study on Geotechnical Properties of Deep-Sea Sediments, NE Equatorial Paciflc of KODOS Area (북동태평양 KODOS 지역 심해저 퇴적물의 지질공학적 특성)

  • Kim, Ki-Hyun;Moon, Jai-Woon;Lee, Kyeong-Yong;Son, Seung-Kyu;Oh, Jae-Kyung;Chi, Sang-Bum
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.320-334
    • /
    • 2000
  • Deep-sea surface sediment were analyzed for their geotechnical properties, and the sediment samples were collected with a multiple-corer from 31 stations along the track line (131$^{\circ}$30'W, 5-12$^{\circ}$N) in the northeast equatorial Paciflc. Most of the sediments from the northern part (8-12$^{\circ}$N) showed typical properties of siliceous sediments, whereas the southern part (5-6$^{\circ}$N) showed calcareous characteristics due to high biogenic carbonate productivity in the surface waters, where its water depth was shallower than the carbonate compensation depth (CCD: 4,400 m). Geotechnical properties changed sharply at the boundary of 7$^{\circ}$N. Calcareous sediments from the southern part had low water contents, low porosity, low shear strength, high bulk density and high specific grain density, whereas siliceous sediments from the northern part attained high water content, high porosity, high shear strength, low bulk density and low specific grain density. Higher sediment activities were observed in the northern sediment samples than the southern sediment samples. The core samples of the northern sediments were divided into a semi-liquid upper layer and a consolidated lower layer with a boundary at 5-8 cm. These sediment samples showed a rapid increasing pattern along the downcore in original shear strength when an opposite trend was observed in the southern samples. The results showed that sediment variabilities in geotechnical properties between the northern and southern parts such as productivities of surface water, grain solubility due to water depth variation, sedimentation rate, erosion and redistribution of sediment, and combined sedimentary processes were distinctly different along the latitude.

  • PDF

Distribution Patterns of Carbon and Nitrogen Contents in the Sediments of the Northeast Equatorial Pacific Ocean (북동 적도태평양해역 퇴적물의 탄소 및 질소함량 분포특성)

  • Kim, Kyeong-Hong;Hyun, Jung-Ho;Son, Ju-Won;Son, Seung-Jyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.210-221
    • /
    • 2008
  • The mesoscale environmental surveys were conducted between $5^{\circ}N\;and\;17^{\circ}N$ mainly along the $131.5^{\circ}W$ meridian from 1997 to 2002 to investigate controlling factors of carbon and nitrogen contents in bottom sediments. Sediments of the study area showed zonal distribution pattern depending on latitudinal position and can be classified into four types; calcareous ooze($5{\sim}6^{\circ}N$), siliceous sediments($8{\sim}12^{\circ}N$), pelagic red clay($16{\sim}17^{\circ}N$), and mixed sediments($7^{\circ}N$). Inorganic carbon(IC) contents varied depending on water depth and carbonate compensation depth(CCD). Carbonate materials were well preserved in the low latitude region, where water depths are shallower than CCD. In contrast, the higher latitude region dominated by siliceous sediment and pelagic red clays has low productivity in water column as well as the water depths deeper than CCD. Thus, most of carbonate materials were dissolved, which resulted in IC contents of less than 0.05% in the sediments. Organic carbon(OC) and total nitrogen contents(TN) in siliceous sediments were higher than in pelagic red clay sediments simply because of higher primary productivity in the siliceous sediment dominated area. The contents of OC and TN were lower in the calcareous ooze than in the siliceous sediments. It is attributed to the high input of calcareous material to the bottom due to relatively shallow water depth of the area, which diluted organic matter contents in the sediment. Overall results indicated that water depth relative to CCD, primary production in water column, and sedimentation rate largely controls the large-scale distribution of carbon and nitrogen contents in the study area.

Preliminary Comparison of Deep-sea Sedimentation in the Ulleung and Shikoku Basins: Deep-sea Circulations and Bottom Current (울릉분지와 시코쿠분지 심해퇴적작용의 비교에 관한 기초연구: 심층수순환과 저층류)

  • Chun, Seung-Soo;Lee, In-Tae
    • Journal of the Korean earth science society
    • /
    • v.23 no.3
    • /
    • pp.259-269
    • /
    • 2002
  • Based on sedimentary structures, degree of bioturbation, and internal erosional layers, the deep-sea core sediments in the East Sea (Ulleung and Yamato basins) and the Northwestern Pacific Ocean (Shikoku Basin) can be divided into two parts (upper and lower) with the boundary of around 10,000 years B.P. in age. The upper part of core KT94-10 from Shikoku Basin is characterized by low sedimentation rate, internal erosion layer, high degree of bioturbation and cross-lamination structures. It can be interpreted as the bottom-current deposits which show some different characteristics from turbidite or hemipelagic sediment. However, its lower part consists of highly bioturbated, massive mud, suggesting that it be not related to the influence of bottom current. On the other hand, the cores in Ulleung and Yamato basins do not show any evidence of bottom-current deposits: their upper parts consist of bioturbated mud, and lower parts are characterized by laminated mud with pyrite filaments, indicating anaerobic condition. Consequently, these sedimentological characteristics suggest that deep-sea circulation would be changed from slow-moving to fast-moving one at this bounding time commonly in the Northwestern Pacific Ocean and the East Sea. Also, even in the same time, the deep-sea circulation in the Northwestern Pacific area would be relatively faster than that in the East Sea.

Geoacoustic Model at the YSDP-105 Long-core Site in the Mid-eastern Yellow Sea (황해 중동부 해역 YSDP-105 심부코어 지점의 지음향 모델)

  • Ryang, Woo-Hun;Jin, Jae-Hwa;Hahn, Jooyoung
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.24-36
    • /
    • 2019
  • In the mid-eastern Yellow Sea, glacio-eustatic sea-level fluctuations and a regional tectonic subsidence have combined to represent an aggradational stacking pattern of sedimentary units during late Pleistocene-Holocene. The accumulated sediments are divisible into two-type units of Type-A and Type-B in high-resolution air-gun seismic profiles and the deep-drilled core of YSDP-105. Type-A unit largely comprises clast-rich coarse-grained sediments of non-marine to paralic origin, whereas Type-B unit consists mostly of tidal fine-grained sediments. Based on a bottom model of the sedimentary units, this study suggested a geoacoustic model of long-coring bottom layers at the YSDP-105 drilling site of the mid-eastern Yellow Sea. The geoacoustic model of 64-m depth below the seafloor with four-layer geoacoustic units was reconstructed in continental shelf strata at 45 m in water depth. For actual modeling, the geoacoustic property values of the models were compensated to in situ depth values below the seafloor using the Hamilton modeling method. We suggest that the geoacoustic model will be used for geoacoustic and underwater acoustic experiments of mid- and low-frequency reflecting on the deep bottom layers in the mid-eastern Yellow Sea.

A Geoacoustic Model at the SSDP-101 Long-core Site in the Korea Strait

  • Woo-Hun Ryang;Seong-Pil Kim
    • Journal of the Korean earth science society
    • /
    • v.44 no.4
    • /
    • pp.264-274
    • /
    • 2023
  • The Korea Strait comprises a continental shelf in a shallow sea that experienced glacio-eustastic sea-level changes during the Quaternary period. A long core of 76.6 m in length was acquired at the South Sea Drilling Project site (SSDP-101; 34°19.666'E and 128°16.335'N) with a 60 m water deep. The uppermost massive sand beds were interpreted as sandy sediments of the nearshore marine sand ridge in the shallow sea during the transgression of sea level, whereas the lower parts of alternating sandy and muddy beds were interpreted as deposits in marsh, estuary, and tidal flat environments. A three-layered geoacoustic model was reconstructed for the sedimentary succession in the high-resolution seismic profile based on a 140-grain size and sediment type of core SSDP-101. For the actual underwater simulation and experiments, the in-situ P-wave speeds were calculated using the sound speed ratio of the Hamilton method.

Correction of Nodule Abundance Using Image Analysis Technique on Manganese Nodule Deposits (영상처리 기법에 의한 심해저 망간단괴의 부존밀도 보정)

  • Park, Chan-Young;Chon, Hyo-Taek;Kang, Jung-Keuk
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.429-437
    • /
    • 1996
  • The purpose of this study is to correct the nodule abundance of FFG (Free Fall Grab) sampler on KODOS (Korea Deep Ocean Study) area in North-East Pacific Ocean. The image analysis of sea-floor photography was carried out for correcting the abundance of nodules, and the image enhancement techniques and edge detection method were used to discriminate between nodules and sediments. The trace of nodules on sediments was detected to reduce the fractionation effect in calculating the coverage of nodules. The three methods, using the coverage of nodules, using the volume density, and using corrected volume density, were utilized for the correction of the nodule abundance. The method using the coverage of nodules was more convenient and available for the correction of nodule abundance than the other two methods. The method using the corrected volume density had the highest confidence level compared with the other methods.

  • PDF

Macrozoobenthic community in the deep sea soft-bottom of the KODOS 96-1 area, northeastern Pacific Ocean (북동태평양 KODOS 96-1 해역의 심해퇴적물에 분포하는 대형저서동물군집)

  • 최진우
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.1 no.2
    • /
    • pp.73-79
    • /
    • 1996
  • This study was conducted to investigate the faunal composition and distribution patterns of macrobenthic community in the deep sea sediments of the KODOS area, the northeastern Pacific Ocean during May 1996. Benthic animals were collected at 25 stations using a spade type box corer. Sediments were sieved through -.3 mm mesh screen. A total of 17 faunal groups in 9 phyla and 363 specimens were identified. Nematoda was the most abundant faunal group which accounted for 30.0% of total abundance. Other dominant faunal groups were foraminiferans (25.1%), harpacticoids (10.2%), xenophyophores (5.2%), and polychaetes (4.7%), Polychaeta was a typically dominant component of macrobenthic community in the study area except traditionally recognized meiofauna taxa. Mean occurrence number of faunal taxa was ca. 6 per 0.01 m$\^$2/, and mean density was estimated as 1,288 indiv./m$\^$2/. The abundance of whole fauna and that of each faunal group was highest at the surface layer of sediment, and decreased monotonously along the sediment depth; 98% of faunal abundance was found within 10 cm depth layer.

Hydrocarbons in shallow sediments of the western Ulleung Basin (서부 울릉분지 천부 퇴적층의 탄화수소)

  • Ryu, Byong-Jae;Kim, Ji-Hoon;Lee, Young-Joo;Kim, Il-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.597-599
    • /
    • 2007
  • Studies on the hydrocarbons in shallow sediments of the East Sea of Korea have been carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM) since 2000. 4946 L-km of 2D multichannel reflection seismic data, 3250 L-km of high-resolution Chirp profiles and 16 selected piston cores were analyzed to determine the presence of hydrocarbons in shallow sediments of the western deep-water Ulleung Basin. The seismic data show a number of blanking zones that probably reflect widespread fluid and gas venting. The blanking zones are often associated with velocity pull-up structures. These upwelling structures are interpreted to be the result of high-velocity natural gas hydrate. There are also several bottom-simulating reflectors that are associated with free gas and probably overlying gas hydrate. Numerous pockmarks were also observed in the Chirp profiles. They are seafloor depressions caused by the removal of near-seafloor soft sediments by escaping of fluid and gas. In piston cores, cracks generally oriented parallel to bedding suggest significant gas content some of which may have been contained in gas hydrate in situ.

  • PDF