Browse > Article

Distribution Patterns of Carbon and Nitrogen Contents in the Sediments of the Northeast Equatorial Pacific Ocean  

Kim, Kyeong-Hong (Deep-sea & Marine Georesources Research Department, Korea Ocean Research & Development Institute)
Hyun, Jung-Ho (Department of Environmental Marine Sciences, Hanyang University)
Son, Ju-Won (Deep-sea & Marine Georesources Research Department, Korea Ocean Research & Development Institute)
Son, Seung-Jyu (Deep-sea & Marine Georesources Research Department, Korea Ocean Research & Development Institute)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.13, no.3, 2008 , pp. 210-221 More about this Journal
Abstract
The mesoscale environmental surveys were conducted between $5^{\circ}N\;and\;17^{\circ}N$ mainly along the $131.5^{\circ}W$ meridian from 1997 to 2002 to investigate controlling factors of carbon and nitrogen contents in bottom sediments. Sediments of the study area showed zonal distribution pattern depending on latitudinal position and can be classified into four types; calcareous ooze($5{\sim}6^{\circ}N$), siliceous sediments($8{\sim}12^{\circ}N$), pelagic red clay($16{\sim}17^{\circ}N$), and mixed sediments($7^{\circ}N$). Inorganic carbon(IC) contents varied depending on water depth and carbonate compensation depth(CCD). Carbonate materials were well preserved in the low latitude region, where water depths are shallower than CCD. In contrast, the higher latitude region dominated by siliceous sediment and pelagic red clays has low productivity in water column as well as the water depths deeper than CCD. Thus, most of carbonate materials were dissolved, which resulted in IC contents of less than 0.05% in the sediments. Organic carbon(OC) and total nitrogen contents(TN) in siliceous sediments were higher than in pelagic red clay sediments simply because of higher primary productivity in the siliceous sediment dominated area. The contents of OC and TN were lower in the calcareous ooze than in the siliceous sediments. It is attributed to the high input of calcareous material to the bottom due to relatively shallow water depth of the area, which diluted organic matter contents in the sediment. Overall results indicated that water depth relative to CCD, primary production in water column, and sedimentation rate largely controls the large-scale distribution of carbon and nitrogen contents in the study area.
Keywords
Sediment; Organic Carbon; Inorganic Carbon; Total Nitrogen; Northeast Equatorial Pacifc;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 김경홍, 손승규, 손주원, 주세종, 2006. 해양퇴적물내 총탄소 및 유기탄소의 분석기법 고찰. 한국해양공학회지, 9: 235-242
2 정회수, 1994. 북동 태평양 KODOS 지역 퇴적물과 공극수 및 망간단괴의 지구화학적 특성. 서울대학교 박사학위 논문, 282 pp
3 현정호, 김경홍, 지상범, 문재운, 1998. 북동적도 태평양 KODOS 97-2 해역 심해저 퇴적물내의 ATP 분포양상. 한국해양학회지, 3: 142-148
4 Honjo, S., J. Dymond, R. Collier and S.J. Manganini, 1995. Export production of particles to the interior of the quatorial Pacific Ocean during the 1992 EqPac experiment. Deep-Sea Research II, 42: 831-870   DOI   ScienceOn
5 Hyun, J.H., J.K. Choi, E.J. Yang, and K.H. Kim, 1998. Biomass and Productivity of bacterioplankton related to surface water divergence in the northeast equatorial Pacific Ocean. J. Microbiology, 36: 151-158
6 Hyun, J.H., and E.J. Yang, 2005. Meso-scale spatial variation in bacterial abundance and production associated with surface convergence and divergence in the NE equatorial Pacific. Aquatic Microbial Ecology, 41: 1-13   DOI   ScienceOn
7 Kessler, W.S., 2006. The circulation of the eastern tropical Pacific : A review. Progress in Oceanography, 69: 181-217   DOI   ScienceOn
8 Milliman, J.D., 1993: Production and accumulation of calciumcarbonate in the ocean - budget of a nonsteady state. Global Biogeochemical Cycles, 7: 927-957   DOI
9 Smith, C.R., W. Berelson, D.J. Demaster, F.C. Dobbs, D. Hammond, D.J. Hoover, R.H. Pope, and M. Stephens, 1997. Latitudinal variations in benthic processes in the abyssal equatorial Pacific: control by biogenic particle flux. Deep-Sea Research II, 44: 2295-2317   DOI   ScienceOn
10 Suess, E., 1980. Particulate of organic carbon flux in the ocean: surface productivity and oxygen utilization. Nature, 288: 260-263   DOI
11 Yang, E.J., J.K. Choi, and J.H. Hyun, 2004. Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean. Marine Biology, 146: 1-15   DOI
12 Schlitzer, R., 2000. Applying the adjoint method for biogeochemical modeling: export of particulate organic matter in the world ocean. In: Inverse methods in global biogeochemical cycles, [Kasibhatla, P., M. Heimann, P. Rayner, N. Mahowald, R.G. Prinn, and D.E. Hartley (eds)], Geophysical Monograph Series, 114: 107-124
13 해양수산부(MOMAF), 2003. 심해저 광물지원 탐사보고서(1). 해양수산부 보고서, CRPM197-00-1582-5, 770 pp
14 Bender, M., T. Sowers, and L. Labeyrie, 1994: The Dole effect and its variations during the last 130,000 years as measured in the VOSTOK ice core. Global Biogeochemical Cycles, 8: 363-376   DOI
15 Horn, D.R., B.M. Horn, and M.N. Delach, 1973. Copper and Nikel content of ocean ferromanganese deposits and their relation to properties of the substrate. In: The Origin and Distribution of Manganese Nodules in the Pacific and Prospects for Exploration, edited by Morgenstein M., Hawaii Inst. Geophysics, Honolulu, pp. 77-83
16 Yang, Y.L., H. Elderfield and M. Ivanovich, 1990. Glacial to Holocene changes in caronate and clay sedimentation in the equatorial Pacific ocean estimated from thorium-230 profiles. Paleoceanography, 5: 789-809   DOI
17 Chester, R., 1990. Marine geochemistry. Unwin Hyman, London, 698 pp
18 Johnson, G.C., B.M. Sloyan, W.S. Kessler, and K.E. McTaggart, 2002. Direct mesurements of upper ocean currents and water properties across the tropical Pacific during the 1990s. Progress in Oceanography, 52: 31-61   DOI   ScienceOn
19 Tyson, R.V., 2001. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study. Organic Geochemistry 32: 333-339   DOI   ScienceOn
20 Smith, C.R., D.J. Hoover, S.E. Doan, R.H. Pope, D.J. Demaster, F.C. Dobbs and M.A. Altabet. 1996. Phytodetritus at the abyssal seafloor across $10^\circ$ of latitude in the central equatorial Pacific. Deep-Sea Research II, 43: 1309-1338   DOI   ScienceOn
21 Salomons, W. and U. Frstner, 1984. Metals in the hydrocycle. Springer-Verlag, Berlin, 349 pp
22 신홍렬, 황상철, 전동철, 김기현, 곽종흠, 소선섭, 2004. 동태평양 KODOS 탐사해역에서의 물리해양환경 및 저층해류 특성. Ocean and Polar Research, 26(2): 341-349   DOI
23 박정희, 김기현, 1999. 북동태평양 KODOS-97지역 주상퇴적물의 층서 및 고해양학적 연구. 한국해양학회지, 4: 50-62
24 Harada, K., Y. Shibamoto and H. Kokubun, 1995. Chemical and radiochemical studies of sediment samples from the JET site. In: Proceedings of the ISOPE-Ocean Mining Synposium, edited by Yamazaki, T., K. Aso, Y. Okano and K. Tsurusaki, ISOPE, Tsukuba, pp. 187-192
25 Johnson, D.A., 1972. Ocean-floor erosion in the equatorial Pacific. Geological Society of America Bulletin, 83: 3121-3144   DOI
26 Libes, S.M., 1992. An introduction to marine biogeochemistry. John Wiley & Sons, Inc., New York, 734 pp
27 해양수산부(MOMAF), 1999. 심해저 광물지원 탐사보고서(1). 해양수산부 보고서, CRPM99019-00-1201-7, 780 pp
28 Keil, R.G., and J.I. Hedges, 1993. Sorption of organic matter to mineral surfaces and the preservation of organic matter in coastal marine sediments. Chemical Geology, 107: 385-388   DOI   ScienceOn
29 Kim. D.S., J.H. Park, and K.H. Kim, 1997. The determination of sedimentation rates by using cosmogenic $^{10}$Be in a sediment core from the Korea Deep Ocean Study (KODOS) area, northeast equatorial Pacific. Ocean Research, 19(2): 127-132
30 Muller, P.J., M. Hartmann and E. Suess, 1988. Environment of manganese nodule. In: The manganese nodule belt of the Pacific Ocean, edited by Halbach, P., G. Friedrich and U. von Stackelberg, Ferdinand Enke Verlag, Stuttgart, pp.70-141
31 Schroeder, R.A., 1975. Absence of $\beta$-alanine and $\gamma$-amino-butyric acid in cleaned foraminiferal shell: implications for use as a chemical criterion to indicate removal of non-indigenous amino acid contaminants. Earth Planet. Sci. Lett., 25: 274-278   DOI   ScienceOn
32 Berger, W.H., V.S. Smetacek and G. Wefer. 1989. Ocean productivity and paleoproductivity-An Overview. In: Productivity of the Ocean: Present and Past, edited by Berger, W. H., V. S. Smetacek and G. Wefer, John Wiley & Sons, New York, pp. 1-34
33 Reimers, C.E., 1982. Organic matter in anoxic sediments off central peru: Relations of porosity, microbial decomposition and deformation properties. Marine Geology, 46: 175-197   DOI   ScienceOn
34 손승규, 현정호, 박정기, 지상범, 김기현, 2001. 북동적도태평양 표층 수온변화에 따른 화학적 환경특성. 한국환경공학회지, 4: 24-37
35 해양수산부(MOMAF), 1998. 심해저 광물지원 탐사보고서(1). 해양수산부 보고서, 1209 pp
36 Berelson, W.M., R.F. Anderson, J. Dymond, D. Demaster, D.E. Hammond, R. Collier, S. Honjo, M. Leinen, J. Mcmanus, R. Pope, C. Smith, and M. Stephens. 1997. Biogenic budgets of particle rain, benthic remineralization and sediment accumulation in the equatorial Pacfic. Deep-Sea Research II 44: 2251-2282   DOI   ScienceOn
37 Bordowskiy, O.K., 1965. Source of organic matter in marine basins. Marine Geology, 3: 5-31   DOI   ScienceOn
38 van Iperen, J. and W. Helder, 1985. A method for the determination of organic carbon in calcareous ma rine sediments. Mar. Geol., 64: 179-187   DOI   ScienceOn
39 Hammond, D.E., J. McManus, W.M. Berelson, T.E. Kilgore and R.H. Pope, 1996. Early diagenesis of material in equatorial Pacific sediments: stoichiometry and kinetics. Deep-Sea Research II, 43: 4-6
40 Vaccaro, R.F., 1965. Inorganic nitrogen in sea water. In: Chemical Oceanography Vol 4, edited by Riley, J.P., and G. Skirrow. Academic Press, pp. 44-78
41 Craig, J.D., 1979. The relationship between bathymetry and ferromanganese deposits in the north equatorial Pacific. Mar. Geol., 29: 165-186   DOI   ScienceOn
42 Martin, J.H., et al., 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 371: 123-129   DOI   ScienceOn
43 Theyer, F., 1977. Micropaleontological dating of DOMES project box cores from test areas A and B, tropical Pacific. In: Deep Ocean Environmental Study : Geology and Geochemistry of DOMES Sites A, B, and C, Equatorial North Pacific, edited by D.Z. Piper, USGS open-file report 77-778, Menlo Park, 267 pp
44 de Haas, H. T.C.E. van Weering, and H. de Stigter, 2002. Organic carbon in shelf sea: sinks or sources, preocesses and products. Continental Shelf Research 22: 691-717   DOI   ScienceOn
45 von Stackelberg, U., V. Marchig, P. Halbach and D. Puteanus, 1988. Principles of nodule field formation. In: The manganese nodule belt of the Pacific Ocean, edited by Halbach, P., G. Friedrich and U. von Stackelberg, Ferdinand Enke Verlag, Stuttgart, pp. 159-166
46 김기현, 박정희, 1999. 북동태평양지역의 방산충 생층서 및 고해양 환경 연구. Ocean Research, 21(2): 127-136
47 Nieuwenhuize, J., Y.E. M. Maas and J.J. Middelburg, 1994. Rapid analysis of organic carbon and nitrogen in particulate materials. Marine Chemistry, 45: 217-224   DOI   ScienceOn
48 van Andel, T.H., G.R. Heath, and R.H. Bennet, 1973. Geological results of Leg 163: the central equatorial Pacific, west of the East Pacific Rise. Init. Rep. Deep-Sea Drill. Proj., 16: 411-472
49 Vinogradov, A.D., 1953. The elementary chemical composition of marine organisms. Mem. Sears. Found. Mar. Res. II
50 Tietjen, J.H., 1992. Abundance and biomass of metazoan meiobenthos in the deep sea In: Deep-sea food chains and the global carbon cycle, edited by Rowe, G.T., V. Pariente, Kluwer Aca-demic publisher, Dordrecht, pp. 45-62
51 Jocteur Monorozier, L., M. Benijoly, P. pillon, F. Andreux, and B. Souchier, 1981. Distribution of organic matter in grain-size fractions of some recent sediments. Advences in Organic Geochemistry
52 Kennett, J.P. 1982, Marine geology. Prentice-Hall Inc., Englewood Cliffs, 813 pp
53 Kontar, E.A. and A.V. Sokov, 1994. A benthic storm in the northeastern tropical Pacific over the fields of manganese nodules. Deep-sea Research I 41: 1069-1089   DOI   ScienceOn
54 Marchig, V. and H. Gundlach, 1981. Seperation of iron from manganese and prowth of manganese nodules as a consequence of diagenetic ageing of radiolaians. Marine Geology, 40: 35-43   DOI   ScienceOn
55 Thunell, R.C., 1982. Carbonate dissolution and abyssal hydrography in the Atlantic Ocean. Marine Geology, 47: 165-180   DOI   ScienceOn
56 Balzer, W., 1984. Organic matter degradation and biogenic element cycling in a nearshore sediment (Kiel Bight)1. Limnol. Oceanogr., 29: 1231-1246   DOI   ScienceOn
57 Beers, J.R., 1966. Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda. Limnol. Oceanog., 11: 520-528   DOI   ScienceOn
58 Piper, D.Z., H.E. Cook, and J.V. Gardner, 1979. Lithic and acoustic stratigraphy of the equatorial north Pacific: DOMES sites A, B, and C. In: Marine Geology and Oceanography of the Pacific Manganese Nodule Province, Marine Science 9, edited by Bischoff, J.L., and D.Z. Piper, Plenium Press, New York, pp. 309-348
59 지상범, 강정극, 오재경, 손승규, 박정기, 2003. 북동태평양 한국 심해저 연구지역 망간단괴의 지역적 분포와 퇴적환경. Ocean and Polar Research, 25(3): 257-267   DOI
60 Coale, K.H., et al., 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383: 495-501   DOI   ScienceOn
61 Muller, P.J., 1977. C/N ratios in Pacific deep-sea sediment: Effect of inorganic amonium and organic nitrogen compounds sorbed by clays. Geochim. Cosmochim. Acta, 41: 765-776   DOI   ScienceOn
62 Wong, C.S., W.K. Johnson, N. Sutherland, J. Nishioka, D.A. Timothy, M. Robert, and S. Takeda, 2006. Iron speciation and dynamics during SERIES, a mesoscale iron enrichment experiment in the NE Pacific. Deep-Sea Research I, 53: 2075-2094   DOI   ScienceOn
63 Berner, R.A., 1980. Early diagenesis: A theoretical approach. Princeton University Press, Princeton, 241 pp
64 Johnson, D.A., and T.C., Johnson, 1970. Sediment redistribution by bottom currents in the central Pacific. Deep-Sea Research, 17: 157-169   DOI   ScienceOn
65 Pickard, G.L. and W.J. Emery, 1982. Descriptive physical oceanography, Pergamon Press, New York, 249 pp
66 Verardo, D.J., P.N. Froelich and A. McIntyre, 1990. Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba Na-1500 Analzer. Deep-Sea Research, 37: 157-165   DOI   ScienceOn