• Title/Summary/Keyword: deep-sea mooring

Search Result 17, Processing Time 0.019 seconds

Consideration on the Preparation of Current Meters for Deep-sea Mooring and Cause of Mooring Recovery Failures (유속계 심해계류 준비 및 유속계 회수 실패원인에 관한 고찰)

  • Hwang, Sang-Chul
    • Ocean and Polar Research
    • /
    • v.30 no.2
    • /
    • pp.207-213
    • /
    • 2008
  • An interest in deep-sea measurements has been gradually increased in association with global warming and the need for deep-sea resources development. Long-term mooring of current meters has been recently conducted primarily for these purposes. In general, current meters equipped on a mooring line are deployed and recovered for a planned period in the sea. This paper describes all the preparations for deep-sea mooring. It also reviews the possible causes of the failures of recovery, which occasionally happens in the sea.

Conceptual Design of Deep-sea Multi-Point Mooring by using Two-Point Mooring (2점지지계류를 활용한 심해 부유체의 다점지지계류 개념설계)

  • Park, In-Kyu;Kim, Kyong-Moo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.462-467
    • /
    • 2008
  • In this paper, we investigated the design method of mooring system in ultra deep sea and carried out the conceptual design for offshore West Africa oil field in ultra deep sea of 3000 meters. Recently, it was feasible to design and install the offshore floating structures in deep sea of up to 2000 meters. Due to the simplicity, two-point mooring design is fully utilized. Force-excursion curves are throughly examined to find out the feasibility of various combinations of mooring lines. Free length and pretension effects are discussed. It is found that composite materials including synthetic fiber rope may be good solution for ultra deep sea mooring design.

Fatigue analysis on the mooring chain of a spread moored FPSO considering the OPB and IPB

  • Kim, Yooil;Kim, Min-Suk;Park, Myong-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.178-201
    • /
    • 2019
  • The appropriate design of a mooring system to maintain the position of an offshore structure in deep sea under various environmental loads is important. Fatigue design of the mooring line considering OPB/IPB(out-of-plane bending/in-plane bending) became an essential factor after the incident of premature fatigue failure of the mooring chain due to OPB/IPB in the Girassol region in West Africa. In this study, mooring line fatigue analysis was performed considering the OPB/IPB of a spread moored FPSO in deep sea. The tension of the mooring line was derived by hydrodynamic analysis using the de-coupled analysis method. The floater motion time histories were calculated under the assumption that the mooring line behaves in quasi-static manner. Additional time domain analysis was carried out by prescribing the obtained motions on top of the selected critical mooring line, which was determined based on spectral fatigue analysis. In addition, nonlinear finite element analysis was performed considering the material nonlinearities, and both the interlink stiffness and stress concentration factors were derived. The fatigue damage to the chain surface was estimated by combining both the hydrodynamic and stress analysis results.

Design and Analysis of a Mooring System for an Offshore Platform in the Concept Design Phase (해양플랜트 개념설계 단계에서의 계류계 초기 설계 및 해석)

  • Sungjun Jung;Byeongwon Park;Jaehwan Jung;Seunghoon Oh;Jongchun Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.248-253
    • /
    • 2023
  • Most offshore platforms utilize chain mooring systems for position keeping. However, information regarding related design modification processes is scarce in literature. This study focuses on the floating liquefied natural gas (LNG) bunkering terminal (FLBT) as the target of shore platform and analyzes the corresponding initial mooring design and model tests via numerical simulations. Subsequently, based on the modified design conditions, a new mooring system design is proposed. Adjusting the main direction of the mooring line bundle according to the dominant environmental direction is found to significantly reduce the mooring design load. Even turret-moored offshore platforms are exposed to beam sea conditions, leading to high mooring tension due to motions in beam sea conditions. Collinear environmental conditions cannot be considered as design conditions. Mooring design loads occur under complex conditions of wind, waves, and currents in different environmental directions. Therefore, it is essential appropriately assign the roll damping coefficients during mooring analysis because the roll has a significant effect on mooring tension.

Fatigue Damage Combination for Spread Mooring System under Stationary Random Process with Bimodal Spectrum Characteristics (바이모달 스펙트럼 특성을 가지는 정상확률과정에 대한 다점계류라인의 피로손상도 조합기법 연구)

  • Lim, Yu-Chang;Kim, Kyung-Su;Choung, Joon-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.813-820
    • /
    • 2010
  • The spread mooring system for FPSO is developed to explore deep sea area, in which swell is dominant. It is known that the tension response of mooring lines in this sea area shows bimodal spectrum. Assuming normal distribution of tension profile and Rayleigh distribution of tension amplitude, the power spectral density function (PSD) of the mooring tension under the bimodal stationary random process is applied for the calculation of spectrum fatigue. Three popular methods, which are simple summation method, combined spectrum method and Jioa-Moan method, are used to combine fatigue damages from bimodal spectrum characteristics. Each damage value is compared with damage using Rainflow Cycle Counting (RCC) method which is believed to be close to exact solution. Vanmarcke' parameter and RMS(Root Mean Square) ratio are employed to assess relative damage variations between from RCC method and from three combination methods. Finally the most reliable fatigue damage combining method for spread mooring system is suggested.

Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

  • Chuang, Zhenju;Liu, Shewen;Lu, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.367-375
    • /
    • 2020
  • This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.

Time Domain Analysis of Spar Platform in Waves (파랑 중 스파 플랫폼의 시간영역 해석)

  • LEE Ho-Young;LIM Choon-Gyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.167-171
    • /
    • 2004
  • The Spar platform with deep draft is characterized as effective structure in extreme wave condition, which has larger natural period than that of waves in sea. In this paper, the time simulation of motion responses of Spar with catenary mooring line is presented in irregular waves. The memory effect is modeled by added mass at infinite frequency and convolution integrals in terms of wave damping coefficients. The added mass, wave damping coefficients and wave exciting forces are obtained from three-dimensional panel method in the frequency domain. The motion equations are consisted of forces for inetia, memory effect, hydrostatic restoring, wave exciting and mooring line. The forces of mooring line are modeled as quasi-static catenary cable.

  • PDF

Time Domain Analysis of a Moored Spar Platform in Waves (파랑 중 계류된 스파 플랫폼의 시간영역 해석)

  • Lee, Ho-Young;Lim, Choon-Gyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.1-7
    • /
    • 2004
  • The Spar platform with deep draft is characterized as effective structure in extreme wave condition, which has larger natural period than that of waves in sea. In this paper, the time domain simulation of motion responses of Spar with catenary mooring line is presented in irregular waves. The memory effect is modeled by added mass at infinite frequency and convolution integrals in terms of wave damping coefficients. The added mass, wave damping coefficients and wave exciting forces are obtained from three-dimensional panel method in the frequency domain. The motion equations are consisted of forces for inertia, memory effect, hydrostatic restoring, wave exciting and mooring line. The forces of mooring line are modeled as quasi-static catenary cable.

Nonlinear Motion Analysis of FPSO with Turret Mooring System (터렛계류된 FPSO의 비선형 운동 해석)

  • Lim, Choon-Gyu;Lee, Ho-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.161-166
    • /
    • 2002
  • As offshore oil fields move towards the deep ocean, the oil production systems such as FPSO are being built these days. Generally, the FPSO is moored by turret mooring lines to keep the position of FPSO. Thus nonlinear motion analysis of moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.

  • PDF

Experimental Study of Surge Motion of a Floater using Flapping Foils in Waves (파도에서 플래핑 포일을 적용한 부유체의 서지 운동에 관한 실험적 연구)

  • Sim, Woo-lim;Rupesh, Kumar;Yu, Youngjae;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.211-216
    • /
    • 2019
  • In order to utilize the marine environment in various fields such as renewable energy and offshore plant, it is necessary to utilize the far and deep ocean. However, there is still a limit to overcome and utilize the extreme deep-sea environment. Currently, the mooring system, which is the representative position control method of floating structure, has a structural and economic limit to expand the installation range to extreme deep-sea environment. Research has been conducted to utilize wave energy by developing floater using flapping foil as an alternative for station keeping in the deep sea by University of Ulsan. Based on the research, a model test was conducted for application to actual structures. In this study, we investigate how the floating body with passive flapping foils move in regular waves with different periods and study the condition of the model that can maintain its position within a certain range by overcoming the movement.