• Title/Summary/Keyword: deep-sea mining

Search Result 59, Processing Time 0.022 seconds

Composition of Rare Earth Elements in Northeast Pacific Surface Sediments, and their Potential as Rare Earth Elements Resources (북동태평양 Clarion-Clipperton 해역 표층 퇴적물의 희토류 조성 및 희토류 광상으로서의 잠재성)

  • Seo, Inah;Pak, Sang Joon;Kiseong, Hyeong;Kong, Gee-Soo;Kim, Jonguk
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.383-394
    • /
    • 2014
  • The surface sediments from the manganese nodule exploration area of Korea in the Clarion-Clipperton fracture zone were investigated to understand the resource potential of and emplacement mechanism for rare earth elements (REEs). The sediments are categorized into three lithological units (Unit I, II and III from top to bottom), but into two groups (Unit I/II and Unit III) based on the distribution pattern of REEs. The distribution pattern of REEs in Unit I/II is similar to that of Post-Archean Australian Shale (PAAS), but shows a negative Ce anomaly and enrichment in heavy REEs (HREEs). In Unit III, the HREE enrichment and Ce anomaly is much more remarkable than Unit I/II when normalized to PAAS, which are interpreted as resulting from the absorption of REEs from seawater by Fe oxyhydroxides that were transported along the buoyant plume from remotely-located hydrothermal vents. It is supported by the PAAS-normalized REE pattern of Unit III which is similar to those of seawater and East Pacific Rise sediments. Meanwhile, the PAAS-normalized REE pattern of Unit I/II is explained by the 4:1 mixing of terrestrial eolian sediment and Unit III from each, indicating the much smaller contribution of hydrothermal origin material to Unit I/II. The studied sediments have the potentiality of a low-grade and large tonnage REE resource. However, the mining of REE-bearing sediment needs a large size extra collecting, lifting and treatment system to dress and refine low-grade sediments if the sediment is exploited with manganese nodules. It is economically infeasible to develop low-grade REE sediments at this moment in time because the exploitation of REE-bearing sediments with manganese nodules increase the mining cost.

Environment-friendly Processing Technologies of Mine Tailings: Research on the Characteristics of Mine Tailings when Developing of Deep Sea Mineral Resources (선광잔류물의 친환경적 처리 기술: 심해저광물자원개발시 발생하는 선광잔류물 특성 연구)

  • Moon, Inkyeong;Yoo, Chanmin;Kim, Jonguk
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.781-792
    • /
    • 2020
  • Mine tailings, which are inevitably formed by the development of manganese nodules, manganese crusts, and hydrothermal seafloor deposits, have attracted attention because of their quantity and potential toxicity. However, there is a lack of data on the quantity of mine tailings being generated, their physicochemical properties, and their effects as environmental hazards and on marine ecosystems in general. The importance of treating mine tailings in an environmentally friendly manner has been recognized recently and related reduction/treatment methods are being considered. In the case of deep-sea mineral resource development, if mine tailings cannot be treated aboard a ship, the issue becomes one of the cost of transporting them to land and solving the problem of environmental pollution there. Therefore, the Korea Institute of Ocean Science and Technology conducted research on the harmfulness of mine tailings, their effect on marine ecosystem, the diffusion model of contaminated particles, and candidate purification treatment technologies based on five representative controlling factors: 1) effects of pollution /on the environment, 2) effects of environmental/ biological hazards, 3) diffusion of particles, 4) mineral dressings, and 5) reducing/processing mine tailings. The results of this study can provide a basis for minimizing environmental problems by providing scientific evidences of the environmental effects of mine tailings. In addition, it is also expected that these results could be applied to the treatment of pollutants of different origins and at land-based mining waste sites.

Standing Stocks and Spatial Distribution of Meiofauna on Deep-sea Sediment in an Environmental Impact Experiment of a Candidate Site for Manganese Nodule Development, NE Pacific (북동태평양 Clarion-Clipperton 균열대의 망간단괴 채광을 위한 환경충격시험 예정 지역 심해 해저면에 서식하는 중형저서생물 현존량 및 공간 분포 특성)

  • Min, Won-Gi;Rho, Hyun Soo;Kim, Dongsung
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1125-1139
    • /
    • 2020
  • This study investigated the distributional pattern of meiobenthos associated with future deep-sea mining in the Korea Deep Ocean Study area present in the Clarion-Clipperton Fracture Zone (CCFZ) located in the southeastern part of the North Pacific Ocean. Standing stocks of meiobenthos were investigated in benthic impact experiment sites (BIS) and Korea Institute of Ocean Science & Technology long-term monitoring (KOMO) sites during the 2008-2014 annual field survey. A total of 14 taxa of meiobenthos were identified. Nematodes were the most abundant taxon (60-86%). Harpacticoid copepods (5-26%) and benthic foraminifera (1-12%) were also dominant at all sites. The total meiobenthic densities varied from 4 to 150 ind./10 cm2. The mean value of total meiobenthic abundance was higher at BIS than at KOMO sites, but there was no significant difference between the two sites. The mean values of the number of taxa and biomass at BIS and KOMO sites were similar. The mean abundance of nematodes that were the most dominant taxa was also higher at BIS than at KOMO sites. The standing stocks in our study sites were relatively lower than those previously reported at other CCFZ sites. These results seem to reflect a low organic concentration in the study area.

Experimental Study on Compressibility Modulus of Pressure Compensation Oil for Underwater Vehicle (심해 장비용 압력보상유의 압축성 계수 측정을 위한 실험적 연구)

  • Kim, Jin-Ho;Yoon, Suk-Min;Hong, Sup;Min, Cheon-Hong;Sung, Ki-Young;Yeu, Tae-Kyeong;Choi, Hyuek-Jin;Lee, Seung-Guk
    • Ocean and Polar Research
    • /
    • v.37 no.1
    • /
    • pp.73-80
    • /
    • 2015
  • In order to determine the appropriate volume of the a pressure compensator of deep seabed mining robots, this paper reports on an experimental test for oil volume change in an oil-filled box. At the design stage of underwater robots, it is crucial to determine the capacity of the hydraulic compensator which is replenished as much as the contracted oil volume of the robots. A pilot mining robot, MienRo was designed to work under 6,000 m in the deep sea. The hydraulic actuating oil and pressure compensating oil of MineRo may be exposed at a hydrostatic pressure environment of 600 bar. Although the oil can be assumed to be incompressible, its volume is actually changed under high pressure conditions due to air contained in the oil and oil contraction. To determine the capacity of the pressure compensator, the oil contraction rate should be verified through an experimental test using a hyperbaric chamber.

Geoacoustic Model at the SSDP-105 Long-core Site of the Ulsan Coastal Area, the East Sea (동해 울산 연안해역 SSDP-105 심부코어 지점의 지음향 모델)

  • Ryang, Woo-Hun;Lee, Gwang-Soo;Hahn, Jooyoung
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.154-163
    • /
    • 2018
  • Geoacoustic model comprises physical and acoustic properties of submarine bottom layers influencing sound transmission through sea water and underwater. This study suggested for the first time that we made a geoacoustic model of long-coring bottom layers at the SSDP-105 drilling site of the Ulsan coastal area, which is located in the southwestern inner shelf of the East Sea. The geoacoustic model of 52 m depth below seafloor with three-layer geoacoustic units was reconstructed in the coastal sedimentary strata at 79 m in water depth. The geoacoustic model was based on the data of a deep-drilled sediment core of SSDP-105 and sparker seismic profiles in the study area. For actual modeling, the geoacoustic property values of the models were compensated to in situ depth values below the sea floor using the Hamilton modeling method. We suggest that the geoacoustic model be used for geoacoustic and underwater acoustic experiments of mid- and low-frequency reflecting on the deep bottom layers in the Ulsan coastal area of the East Sea.

A Study on Legislation for the Improvement of the Marine Environment and Safety Act for Deep Sea Drilling (심해 시추와 관련된 국내 해양 환경 및 안전 관련법 개선에 대한 입법론적 연구)

  • Hong, Sung-Hwa;Lee, Chang-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • This study is focused on concepts and types of drilling investigating the scope of activity and problems the application of marine environment and safety acts related to deep-sea drilling for the development of the continental shelf in Korea. For the systemic development of subsea mineral resources, this study suggest a legislative proposal for the establishment of a separate law based on the UK Offshore Installation (Safety Case) regulation and improvement of the marine environment management act, maritime safety act and oil & mining safety regulation. Specially, this study emphasized on the necessity of establishing education, training and evaluation system according to the international certification training for the domestic work force based on accident cases related to overseas offshore plants.

Characterizing Geomorphological Properties of Western Pacific Seamounts for Cobalt-rich Ferromanganese Crust Resource Assessment (서태평양 해저산의 망간각 자원평가를 위한 해저지형 특성 분석)

  • Joo, Jongmin;Kim, Jonguk;Ko, Youngtak;Kim, Seung-Sep;Son, Juwon;Pak, Sang Joon;Ham, Dong-Jin;Son, Seung Kyu
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.121-134
    • /
    • 2016
  • We characterize the spatial distribution of Cobalt-rich ferromanganese crusts covering the summit and slopes of a seamount in the western Pacific, using acoustic backscatter from multibeam echo sounders (MBES) and seafloor video observation. Based on multibeam bathymetric data, we identify that ~70% of the summit area of this flattopped seamount has slope gradients less than $5^{\circ}$. The histogram of the backscatter intensity data shows a bi-modal distribution, indicating significant variations in seabed hardness. On the one hand, visual inspection of the seafloor using deep-sea camera data exhibits that the steep slope areas with high backscatter are mainly covered by manganese crusts. On the other hand, the visual analyses for the summit reveal that the summit areas with relatively low backscatter are covered by sediments. The other summit areas, however, exhibit high acoustic reflectivity due to coexistence of manganese crusts and sediments. Comparison between seafloor video images and acoustic backscatter intensity suggests that the central summit has relatively flat topography and low backscatter intensity resulting from unconsolidated sediments. In addition, the rim of the summit and the slopes are of high acoustic reflectivity because of manganese crusts and/or bedrock outcrops with little sediments. Therefore, we find a strong correlation between the acoustic backscatter data acquired from sea-surface multibeam survey and the spatial distribution of sediments and manganese crusts. We propose that analyzing acoustic backscatter can be one of practical methods to select optimal minable areas of the ferromanganese crusts from seamounts for future mining.

Study of Deepsea Mining Robot "MineRo" Using Table of Orthogonal Arrays (직교 배열표를 이용한 심해저 채광로봇 미내로의 주행 특성 연구)

  • Lee, Chang-Ho;Kim, Hyung-Woo;Choi, Jong-Su;Yeu, Tae-Kyeong;Lee, Min-Uk;Oh, Jae-Won;Hong, Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.152-159
    • /
    • 2014
  • KRISO(Korea Research Institute of Ships & Ocean Engineering) designed and manufactured a pilot mining robot called "MineRo" in 2012. MineRo is composed of four track modules. In general, much time and money are needed for deep-sea tests. Therefore, a numerical analysis to predict the dynamic behaviors has to be performed before a deep-sea test. In the numerical analysis, the information about the mining robot and soil properties are the most important factors to analyze the driving performance and dynamic response of MineRo. A terra-mechanics model of extremely cohesive soft soil is implemented in the form of the relationships between the normal pressure and sinkage, and between the shear stress and shear displacement. It is possible to acquire information about MineRo from the CAD model in the design phase. The Wong model is applied to the terra-mechanics model. This model is necessary to acquire many soil coefficients for a numerical analysis. However, in soil testing, the amount of soil property data obtained is limited. Moreover, it is difficult to analyze all of the cases for the many soil coefficients. In this paper, the dynamic behaviors of MineRo are analyzed according to the driving velocity, steering ratio, and variable extremely cohesive soft soil properties using a table of orthogonal arrays. The dynamic responses of MineRo are the turning radius, sinkage, and slip ratio. The relationships between the dynamic responses and variable soil properties are derived for MineRo.

Bathymetric Change of a Sand Mining Site within EEZ, West Sea of Korea (서해 배타적경제수역[EEZ]내 해사채취구역의 지형변화)

  • Kim, Baeck-Oon;Lee, Sang-Ho;Yang, Jae-Sam
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.836-843
    • /
    • 2005
  • Two data sets of repeated hydrographic surveys with a single beam echo-sounder were obtained to investigate morphological changes on a sand mining site within EEZ near the Eocheong Islands, West Sea of Korea. Their accuracies of depth measurement, estimated from the crossover analysis, correspond to the Oder 2 of IHO standards. Bathymetric maps show a feature of 300m wide and 10m deep hollow, whose evolution can be seen in difference grids of the two bathymetric maps. However, data of higher accuracy and resolution enable precise quantification of extracted sand volume. Since this morphological change could affect sedimentary environment as well as benthic ecology, environmental impact assessment based on scientific research data is required for management and sustainable development of limited sand resource.

A Study on the Distributional Characteristics of Unminable Manganese Nodule Area from the Investigation of Seafloor Photographs (해저면 영상 관찰을 통한 망간단괴 채광 장애지역 분포 특성 연구)

  • Kim, Hyun-Sub;Jung, Mee-Sook;Park, Cheong-Kee;Ko, Young-Tak
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.173-182
    • /
    • 2007
  • It is well known that manganese nodules enriched with valuable metals are abundantly distributed in the abyssal plain area in the Clarion-Clipperton (C-C) fracture zone of the northeast Pacific. Previous studies using deep-sea camera (DSC) system reported different observations about the relation of seafloor topographic change and nodule abundance, and they were sometimes contradictory. Moreover, proper foundation on the estimation of DSC underwater position, was not introduced clearly. The variability of the mining condition of manganese nodule according to seafloor topography was examined in the Korea Deep Ocean Study (KODOS) area, located in the C-C zone. In this paper, it is suggested that the utilization of deep towing system such as DSC is very useful approach to whom are interested in analysing the distributional characteristics of manganese nodule filed and in selecting promising minable area. To this purpose, nodule abundance and detailed bathymetry were acquired using deep-sea camera system and multi-beam echo sounder, respectively on the seamount free abyssal hill area of southern part ($132^{\circ}10'W$, $9^{\circ}45'N$) in KODOS regime. Some reasonable assumptions were introduced to enhance the accuracy of estimated DSC sampling position. The accuracy in the result of estimated underwater position was verified indirectly through the comparison of measured abundances on the crossing point of neighboring DSC tracks. From the recorded seafloor images, not only nodules and sediments but cracks and cliffs could be also found frequently. The positions of these probable unminable area were calculated by use of the recorded time being encountered with them from the seafloor images of DSC. The results suggest that the unminable areas are mostly distributed on the slope sides and hill tops, where nodule collector can not travel over.