도시녹지는 도시 생태계 건강성 증진을 위한 중요한 요소이며, 건강한 도시 생태계 유지 및 관리를 위해서는 도시녹지의 공간적인 현황 파악이 필요하다. 환경부에서는 2010년 이후부터 총 41개의 분류 항목을 갖는 1m 급 해상도의 세분류 토지피복지도를 제공해오고 있으나, 가로수와 같은 도시 내 고해상도 상세 녹지 정보는 기타 초지로 분류되거나 누락되어 오고 있다. 따라서, 본 연구에서는 수원시 지역을 대상으로 1m 이하 급의 고해상도 원격탐사 자료(항공 LiDAR 및 RGB 정사영상)를 이용하여, 기존 세분류 토지피복지도에서는 나타나지 않는 고해상도의 상세 도시 녹지(수목, 관목 및 초지) 정보를 분류하고자 하였다. 분류 기법으로는 딥러닝 기반의 이미지 분할방법인 U-Net 구조의 모델을 활용하였으며, 분류 항목의 수 및 사용하는 자료의 종류에 따라 총 3가지의 모델(LRGB10, LRGB5, 및 RGB5)을 제안하고 성능을 평가하였다. 검증 지역에 대한 세 모델의 평균 전체 정확도는 각 83.40%(LRGB10), 89.44%(LRGB5), 74.76%(RGB5)이며, 항공 LiDAR와 RGB 정사영상을 함께 사용하여 총 5개의 항목(수목, 관목, 초지, 건물, 및 그 외)을 분류하는 LRGB5 모델의 성능이 가장 높게 나타났다. 수원시의 수목, 관목 및 초지 기준의 전체 녹지 현황은 각 45.61%(LRGB10), 43.47%(LRGB5), 및 44.22%(RGB5)로 나타났으며, 세 모델 모두 기존 세분류 토지피복지도와 비교하여 평균 13.40%의 도시 수목 정보를 더 제공할 수 있는 것으로 나타났다. 더불어 이러한 도시녹지 분류 결과는 향후 중분류 토지피복지도와 같은 기존 GIS 정보와의 융합을 통해 가로수 녹지 비율 현황 등 추가적인 상세 녹지 현황 정보를 제공할 수 있어, 다양한 도시녹지 연구 및 정책의 기초 자료로 활용될 수 있을 것으로 기대된다.
농촌 도로는 농촌 지역의 개발과 관리를 위한 핵심 기반시설로서 원격탐사 자료를 활용한 농촌 도로 관리 기술은 농촌 교통 인프라 확대, 농촌 주민의 삶의 질 개선을 위해 매우 중요하다. 본 연구에서는 농촌 지역을 촬영한 고해상도 위성영상을 활용하여 농촌 도로를 매핑하기 위해 영상 분류 방법과 영상 분할 방법을 다음의 과정을 통하여 비교하였다. 영상 분류의 경우, 심층 신경망 기반 딥러닝 기법을 주어진 고해상도 위성영상에 적용하여 고정밀 객체 분류 지도를 제작하였고 이로부터 농촌 도로 객체를 추출함으로써 농촌 도로를 매핑하였다. 영상 분할의 경우, multiresolution segmentation 기법을 동일한 위성영상에 적용하여 세그먼트 영상을 제작하였고 농촌 도로에 위치한 다중 객체들을 선택하고 이들을 최종적으로 융합하여 농촌 도로를 매핑하였다. 영상 분류 및 영상 분할 방법을 통해 매핑한 농촌 도로의 정확도 검증을 위해 100개의 검사점을 사용하였고 다음과 같은 결론을 도출하였다. 영상 분류 방법에서는 객체 분류 지도 내 오분류 에러로 인해 영상 내 일부 농촌 도로의 인식이 불가능하였으나 영상 분할 방법에서는 영상 내 모든 농촌 도로의 인식이 가능하였으므로 영상 분할 방법이 영상 분류 방법보다 위성영상을 이용한 농촌 도로 매핑 작업에 더 적합한 방법이었다. 그러나 영상 분할 방법을 통해 매핑한 농촌 도로를 구성하는 일부 세그먼트들이 농촌 도로 외 객체를 포함하고 있어 영상 내 일부 농촌 도로에서 오분류 에러가 발생하였다. 추후 연구에서는 객체 기반 분류 또는 합성곱 신경망 등 다양한 정밀 객체 인식 기법을 고해상도 위성영상에 적용하여 농촌 도로의 정확도를 개선할 계획이다.
본 연구는 소양강댐 유역을 대상으로 LSTM 기반의 일유출량 추정 딥러닝 모형을 개발한 후, 모형구조 및 입력자료의 다양한 조합에 대한 모형의 정확도를 살폈다. 첫 12년(1997.1.1-2008.12.31) 동안의 유역평균 일강수량, 일기온, 일풍속 (이상 입력), 일평균 유량 (출력)으로 이루어진 데이터베이스를 기반으로 모형을 구축하였으며, 이후 12년(2009.1.1-2020.12.31) 동안의 자료를 사용하여 Nash-Sutcliffe Model Efficiency Coefficient (NSE)와 RMSE를 살폈다. 가장 높은 정확도를 보인 조합은 64개의 은닉유닛을 가진 LSTM 모형 구조에 가능한 모든 입력자료(12년치의 일강수량, 일기온, 일풍속)를 활용한 경우로서 검증기간의 NSE와 RMSE는 각각 0.862와 76.8 m3/s를 기록하였다. LSTM의 은닉유닛이500개를 초과하는 경우 과적합으로 인한 모형의 성능 저하가 나타나기 시작했으며, 1000개를 초과하는 경우 과적합 문제가 두드러졌다. 12년치의 일강수만 입력자료로 활용한 경우에도 매우 높은 성능(NSE=0.8~0.84)의 모형이 구축되었으며, 한 해의 자료만을 활용하여 학습한 경우에도 충분히 활용 가능한 정확도(NSE=0.63~0.85)를 가진 모형을 구축할 수 있었다. 특히 유량의 변동성이 큰 한 해의 자료만을 활용하여 모형을 학습한 경우 매우 높은 정확도(NSE=0.85)의 모형이 구축되었다. 학습자료가 중유량과 양극한의 유량을 모두 포함한 경우라면 5년 이상의 입력자료는 모형의 성능을 크게 개선시키지 못했다.
자동차 번호인식을 위해선 수많은 번호판 데이터가 필요하다. 번호판 데이터는 과거의 번호판부터 최신의 번호판까지 균형 있는 데이터의 확보가 필요하다. 하지만 실제 과거의 번호판부터 최신의 번호판의 데이터를 획득하는데 어려움이 있다. 이러한 문제를 해결하기 위해 인조 번호판을 이용하여 자동차 번호판을 생성하여 딥러닝을 통한 번호판 인식 연구가 진행되고 있다. 하지만 인조 데이터는 실제 데이터와 차이가 존재하며, 이러한 문제를 해결하기 위해 다양한 데이터 증강 기법을 사용한다. 기존 데이터 증강 방식은 단순히 밝기, 회전, 어파인 변환, 블러, 노이즈등의 방법을 사용하였다. 본 논문에서는 데이터 증강 방법으로 인조데이터를 실제 데이터 스타일로 변환하는 스타일 변환 방법을 적용한다. 또한 실제 번호판 데이터는 원거리가 많고 어두운 경우 잡음이 많이 존재한다. 단순히 입력데이터를 가지고 문자를 인식할 경우 오인식의 가능성이 높다. 이러한 경우 문자인식 향상을 위해 본 논문에서는 문자인식을 위하여 화질개선 방법으로 DeblurGANv2 방법을 적용하여 번호판 인식 정확도를 높였다. 번호판 검출 및 번호판 번호인식을 위한 딥러닝의 방식은 YOLO-V5를 사용하였다. 인조 번호판 데이터 성능을 판단하기 위해 자체적으로 확보한 자동차 번호판을 수집하여 테스트 셋을 구성하였다. 스타일 변환을 적용하지 않은 번호판 검출이 0.614mAP를 기록하였다. 스타일 변환을 적용한 결과 번호판 검출 성능이 0.679mAP 기록하여 성능이 향상되었음을 확인하였다. 또한 번호판 문자인식에는 화질 개선을 하지 않은 검출 성공률은 0.872를 기록하였으며, 화질 개선 후 검출 성능이 0.915를 기록하여 성능 향상이 되었음을 확인 하였다.
본 연구는 철도표면상에 발생하는 노후 현상 중 하나인 결함 검출을 위해 학습데이터를 생성함으로써 결함 검출 모델에서 더 높은 점수를 얻기 위해 진행되었다. 철도표면에서 결함은 선로결속장치 및 선로와 차량의 마찰 등 다양한 원인에 의해 발생하고 선로 파손 등의 사고를 유발할 수 있기 때문에 결함에 대한 철도 유지관리가 필요 하다. 그래서 철도 유지관리의 자동화 및 비용절감을 위해 철도 표면 영상에 영상처리 또는 기계학습을 활용한 결함 검출 및 검사에 대한 다양한 연구가 진행되고 있다. 일반적으로 영상 처리 분석기법 및 기계학습 기술의 성능은 데이터의 수량과 품질에 의존한다. 그렇기 때문에 일부 연구는 일반적이고 다양한 철도표면영상의 데이터베이스를 확보하기위해 등간격으로 선로표면을 촬영하는 장치 또는 탑재된 차량이 필요로 하였다. 본연구는 이러한 기계적인 영상획득 장치의 운용비용을 감소시키고 보완하기 위해 대표적인 영상생성관련 딥러닝 모델인 생성적 적대적 네트워크의 기본 구성에서 여러 관련연구에서 제시된 방법을 응용, 결함이 있는 철도 표면 재생성모델을 구성하여, 전용 데이터베이스가 구축되지 않은 철도 표면 영상에 대해서도 결함 검출을 진행할 수 있도록 하였다. 구성한 모델은 상이한 철도 표면 텍스처들을 반영한 철도 표면 생성을 학습하고 여러 임의의 결함의 위치에 대한 Ground-Truth들을 만족하는 다양한 결함을 재 생성하도록 설계하였다. 재생성된 철도 표면의 영상들을 결함 검출 딥러닝 모델에 학습데이터로 사용한다. 재생성모델의 유효성을 검증하기 위해 철도표면데이터를 3가지의 하위집합으로 군집화 하여 하나의 집합세트를 원본 영상으로 정의하고, 다른 두개의 나머지 하위집합들의 몇가지의 선로표면영상을 텍스처 영상으로 사용하여 새로운 철도 표면 영상을 생성한다. 그리고 결함 검출 모델에서 학습데이터로 생성된 새로운 철도 표면 영상을 사용하였을 때와, 생성된 철도 표면 영상이 없는 원본 영상을 사용하였을 때를 나누어 검증한다. 앞서 분류했던 하위집합들 중에서 원본영상으로 사용된 집합세트를 제외한 두 개의 하위집합들은 각각의 환경에서 학습된 결함 검출 모델에서 검증하여 출력인 픽셀단위 분류지도 영상을 얻는다. 이 픽셀단위 분류지도영상들과 실제 결함의 위치에 대한 원본결함 지도(Ground-Truth)들의 IoU(Intersection over Union) 및 F1-score로 평가하여 성능을 계산하였다. 결과적으로 두개의 하위집합의 텍스처 영상을 이용한 재생성된 학습데이터를 학습한 결함 검출모델의 점수는 원본 영상만을 학습하였을 때의 점수보다 약 IoU 및 F1-score가 10~15% 증가하였다. 이는 전용 학습 데이터가 구축되지 않은 철도표면 영상에 대해서도 기존 데이터를 이용하여 결함 검출이 상당히 가능함을 증명하는 것이다.
최근 우리나라 주변 해역의 해수면 온도가 상승하고 있다. 이러한 수온 상승은 어족자원의 변화를 일으켜 낚시와 같은 레저활동에 영향을 미치기도 하며, 특히 고수온은 적조 발생으로 이어져 양식업과 같은 해양산업에 극심한 피해를 유발하기도 한다. 한편 수온 변화는 잠수함을 탐지하는 군사작전과도 밀접하게 연관되어 있다. 이는 잠수함을 탐지하기 위한 음파가 수온층에 따라 회절, 굴절 및 반사되는 정도가 달라지기 때문이다. 이와 같이 해양과 관련된 다양한 분야에서 중요성을 가지는 해양 수온의 변화를 예측하기 위한 연구가 현재 활발하게 진행되고 있다. 그러나 기존 연구들은 대부분 해수면 온도만을 예측하는데 중점을 두고 있어 수심별 어족자원의 변화나 잠수함 탐지와 같은 군사분야 활용이 제한된다. 이에 본 연구에서는 수심별 수온자료 및 해수면 온도와 상관관계를 가지는 기온, 기압, 일조량 등의 기상 데이터를 함께 활용하여 수심 38 m 혼합층의 수온을 예측하였다. 사용된 데이터는 이어도 해양과학기지에서 관측한 2016년부터 2020년까지의 기상 데이터와 수심별 수온 자료이며, 예측의 정확성과 효율성을 높이기 위해 딥러닝 기법 중 시계열 자료에 적합하다고 알려진 LSTM(Long Short-Term Memory)을 사용하였다. 실험 결과 1시간 예측을 기준으로 기온과 기압, 일조량 자료를 함께 활용한 모델의 RMSE(Root Mean Square Error)는 0.473으로 나타났다. 반면 해수면 수온만을 활용한 모델의 RMSE는 0.631로 나타나 기상데이터를 함께 활용한 모델이 상부 혼합층 수온 예측에서 보다 우수한 성능을 보임을 확인하였다.
국내 200 m 이상 연장의 터널에서는 CCTV 설치가 의무화되어 있으며, 터널 내 돌발 상황을 자동으로 인지한 다음 터널 관리자에게 알릴 수 있는 터널 영상유고시스템의 운영이 권고된다. 여기서 터널 내 설치된 CCTV는 터널 구조물의 공간적인 한계로 인해 낮은 높이로 설치된다. 이에 따라 이동차량과 매우 인접하므로, 이동차량과 CCTV와의 거리에 따른 원근현상이 매우 심하다. 이로 인해, 기존 터널 영상유고시스템은 터널 CCTV로부터 멀리 떨어질수록 차량의 정차 및 역주행, 보행자 출현 및 화재 발생과 같은 터널 내 유고상황을 인지하기 매우 어려우며, 100 m 이상의 거리에서는 높은 유고상황 인지 성능을 기대하기 어려운 것으로 알려져 있다. 이 문제를 해결하기 위해 관심영역 설정 및 역 원근변환(Inverse perspective transform)을 도입하였으며, 이 과정을 통해 얻은 변환영상은 먼 거리에 있는 객체의 크기가 확대된다. 이에 따라 거리에 따라 객체의 크기가 비교적 일정하게 유지되므로, 거리에 따른 객체 인식 성능과 영상에서 보이는 차량의 이동속도 또한 일관성을 유지할 수 있다. 이를 증명하기 위해 본 논문에서는 터널 CCTV의 원본영상과 변환영상을 바탕으로 동일한 조건을 가지는 데이터셋을 각각 제작 및 구성하였으며, 영상 내 차량의 실제 위치의 변화에 따른 겉보기 속도와 객체 크기를 비교하였다. 그 다음 딥러닝 객체인식 모델의 학습 및 추론을 통해 각 영상 데이터셋에 대한 거리에 따른 객체인식 성능을 비교하였다. 결과적으로 변환영상을 사용한 모델은 200 m 이상의 거리에서도 객체인식 성능과 이동차량의 유고상황 인지 성능을 확보할 수 있음을 보였다.
정보기술의 급격한 발달은 의료 환경에서도 많은 변화를 가져오고 있다. 특히 빅데이터와 인공지능(AI)을 활용한 의료영상 정보 시스템의 빠른 변화를 견인하고 있다. 전자의무기록(EMR)과 의료영상저장전송시스템(PACS)으로 구성된 처방전달시스템(OCS)은 의료 환경을 아날로그에서 디지털로 빠르게 바꾸어 놓았다. PACS는 여러 솔루션과 결합하여 호환, 보안, 효율성, 자동화 등 새로운 발전 방향을 보여주고 있다. 그 중, 영상의 질적 개선을 할 수 있는 빅데이터를 활용한 인공지능(AI)과의 결합이 활발히 진행되고 있다. 특히 딥러닝 기술을 활용하여 의료 영상 판독을 보조할 수 있는 시스템인 AI PACS가 대학과 산업체의 협력으로 개발되어 병원에서 활용되고 있다. 이처럼 의료 환경에서 의료영상 정보 시스템의 빠른 변화에 맞추어 의료시장의 구조적인 변화와 이에 대처할 수 있는 의료정책의 변화도 필요하다. 한편, 의료영상정보는 디지털 의료영상 전송 장치에서 생성되는 DICOM 방식을 기본으로 하고, 생성하는 방법의 차이에 따라 Volume 영상, 단면 영상인 2차원적 영상으로 구분된다. 또한, 최근 많은 의료기관에서는 스마트 병원 서비스를 내세우며 차세대 통합 의료정보시스템의 도입을 서두르고 있다. 차세대 통합 의료정보시스템은 EMR을 바탕으로 전자동의서, AI와 빅데이터를 활용한 정밀의료, 외부기관 등을 통합한 솔루션으로 구축하며, 이를 바탕으로 환자 정보 DB 구축과 데이터의 표준화를 통한 의료 빅데이터 기반의 의학 연구를 목적으로 한다. 우리나라의 의료영상 정보 시스템은 앞선 IT 기술력과 정부의 정책에 힘입어 세계적인 수준에 있으며, 특히 PACS 관련 프로그램은 의료 영상정보 기술에서 세계로 수출을 하고 있는 한 분야이다. 본 연구에서는 빅데이터를 활용한 의료영상 정보 시스템의 분석과 함께 의료영상 정보 시스템이 국내에 도입되게 된 역사적 배경을 바탕으로 현재의 흐름을 파악하고 나아가 미래의 발전 방향을 예측하였다. 향후, 20여 년 동안 축적된 DICOM 빅데이터를 기반으로 AI, 딥러닝 알고리즘을 활용하여 영상 판독률을 높일 수 있는 연구를 진행하고자 한다.
달 현지 탐사를 위해 무인 이동체에 대한 연구가 지속적으로 이루어져 있으며 달 지상 관심 지역의 정확한 위치 및 맵핑을 위한 실시간 정보화 작업이 요구되고 있다. 딥러닝 영상 처리 분석 기술을 실제 로버에 적용하기 위해 소프트웨어의 통합과 최적화에 대한 연구가 필요하며 본 연구에서는 가상의 달 기지 건설현장의 영상을 실시간 분석하여 핵심 객체의 공간 정보를 자동으로 수치화하는 방안에 대한 기초 연구가 진행되었다. 본 연구를 통해 이미 구축된 영역 분할 기반 객체 인식 알고리즘을 경계 상자 기반 객체 인식알고리즘으로 변경하여 객체 인식 정확도 및 추론 속도를 개선하는 작업이 이루어졌으며, 대용량 데이터 기반 객체 매칭 학습을 위해 Batch Hard Triplet Mining 기법을 도입하고, 학습 및 추론에 대한 최적화 연구가 수행되었다. 또한 개선된 객체 인식 및 동일 객체 매칭 소프트웨어를 통합하고, 입력 이미지 내 동일 객체 자동 매칭을 시각화하는 소프트웨어를 개발하였으며, 위성 모사 촬영 영상 내 객체를 학습 데이터로, 이동체 촬영 영상 내 객체를 추론 데이터로 사용하여 동일 객체 매칭의 학습 및 추론이 이루어졌다. 본 연구의 결과는 이동체의 연속 촬영 영상을 기반 3차원 공간 정보를 구현 및 관심 공간 내 객체 위치 설정에 활용할 수 있을 것으로 사료되며, 향후 달 기지 건설 현장에서의 영상 기반 시공 모니터링 및 제어를 위한 자동 현장 및 주요 대상물 공간 정보 구축 시스템과의 연계에 기여할 것으로 기대된다.
벼의 출수기를 추정하는 것은 농업생산성과 관련된 중요한 과정 중 하나이지만 세계적인 이상기후의 증가로 벼의 출수기를 추정하는 것이 어려워지고 있다. 본 연구에서는 CNN 분류모델을 사용하여 다양한 영상데이터에서 벼의 출수기를 추정하려고 시도하였다. 드론과 타워형 영상관측장치 그리고 일반 RGB 카메라로 촬영된 직하방과 경사각 영상을 수집하였다. 수집한 영상은 CNN 모델의 입력데이터로 사용하기 위해서 전처리를 진행하였고, 사용된 CNN 아키텍처는 이미지 분류 모델에서 일반적으로 사용되는 ResNet50, InceptionV3 그리고 VGG19 를 사용하였다. 각각의 아키텍처는 모델의 종류, 영상의 유형과 관계없이 0.98 이상의 정확도를 나타내었다. 또한 CNN 분류 모델이 영상의 어떤 특징을 보고 분류하였는지 시각적으로 확인하기 위해서 Grad-CAM 을 사용하였다. Grad-CAM 결과 CNN 분류 모델은 벼의 출수를 이삭의 형태에 높은 가중치를 두어 분류 하는 것을 확인하였다. 다음으로 작성된 모델이 실제 논 포장 모니터링 이미지에서 벼의 출수기를 정확하게 추정하는지 확인하였다. 각각 다른 지역 4 개의 벼 포장에서 벼의 출수기를 약 하루정도의 차이로 추정하는 것을 확인하였다. 이 방법을 통해서 다양한 논 포장의 모니터링 이미지를 활용하여 자동적이고 정량적으로 벼의 출수기를 추정 할 수 있다고 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.