• 제목/요약/키워드: deep-learning

검색결과 5,679건 처리시간 0.029초

위치 영역 클러스터링을 통한 이동 경로 생성 기법 (Movement Route Generation Technique through Location Area Clustering)

  • 윤창표;황치곤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.355-357
    • /
    • 2022
  • 본 논문에서는 딥러닝 네트워크인 순환신경망(RNN) 모델을 사용해 이동 중인 객체의 이동 경로의 예측을 위한 포지셔닝 기술로서 실내 환경에서 지역 경로 내의 이동 중인 차량의 경로 예측에 연속적인 위치 정보를 이용하여 현재 위치 결정의 오류를 낮출 수 있는 이동 경로 생성 기법을 제안한다. GPS 정보를 사용할 수 없는 실내 환경의 경우 RNN 모델을 적용하기 위해서는 데이터 세트가 연속적이고 순차적이어야 한다. 그러나 Wi-Fi 전파 지문 데이터는 수집 시점의 특정 위치에 대한 특징 정보로서 연속성이 보장되지 않기 때문에 RNN 데이터로 사용할 수 없다. 따라서 RNN 모델에 필요한 순차적 위치의 연속성을 부여하여 실내 환경의 지역 경로를 이동하는 차량의 이동 경로 생성 기법을 제안한다.

  • PDF

관개용수로 CCTV 이미지를 이용한 CNN 딥러닝 이미지 모델 적용 (Application of CCTV Image and Semantic Segmentation Model for Water Level Estimation of Irrigation Channel)

  • 김귀훈;김마가;윤푸른;방재홍;명우호;최진용;최규훈
    • 한국농공학회논문집
    • /
    • 제64권3호
    • /
    • pp.63-73
    • /
    • 2022
  • A more accurate understanding of the irrigation water supply is necessary for efficient agricultural water management. Although we measure water levels in an irrigation canal using ultrasonic water level gauges, some errors occur due to malfunctions or the surrounding environment. This study aims to apply CNN (Convolutional Neural Network) Deep-learning-based image classification and segmentation models to the irrigation canal's CCTV (Closed-Circuit Television) images. The CCTV images were acquired from the irrigation canal of the agricultural reservoir in Cheorwon-gun, Gangwon-do. We used the ResNet-50 model for the image classification model and the U-Net model for the image segmentation model. Using the Natural Breaks algorithm, we divided water level data into 2, 4, and 8 groups for image classification models. The classification models of 2, 4, and 8 groups showed the accuracy of 1.000, 0.987, and 0.634, respectively. The image segmentation model showed a Dice score of 0.998 and predicted water levels showed R2 of 0.97 and MAE (Mean Absolute Error) of 0.02 m. The image classification models can be applied to the automatic gate-controller at four divisions of water levels. Also, the image segmentation model results can be applied to the alternative measurement for ultrasonic water gauges. We expect that the results of this study can provide a more scientific and efficient approach for agricultural water management.

문장 정보량 기반 문서 추출 요약의 효과성 제고 (Improving the effectiveness of document extraction summary based on the amount of sentence information)

  • 김은희;임명진;신주현
    • 스마트미디어저널
    • /
    • 제11권3호
    • /
    • pp.31-38
    • /
    • 2022
  • 문서 추출 요약 연구에서는 문장 간 관계를 기반으로 중요한 문장을 선택하는 다양한 방법들이 제안되었다. 문장의 도합유사도를 이용한 한국어 문서 요약에서는 문장의 도합유사도를 문장 정보량으로 보고, 이를 기준으로 중요한 문장을 선택하여 요약문을 추출하였다. 그러나 이는 각 문장이 전체 문서에 기여하는 다양한 중요도를 고려하지 못한다는 문제가 있다. 이에 본 연구에서는 문장의 정량적 정보량과 의미적 정보량을 기반으로 중요한 문장을 선택하여 요약문을 제공하는 문서 추출 요약 방법을 제안한다. 실험 결과, 추출 문장 일치도는 58.56%, ROUGE 점수가 34로 비교 연구보다 우수한 성능을 보였으며, 딥러닝 기반 방법과 비교해 추출 방법은 가볍지만 성능은 유사하였다. 이를 통해 문장 간 의미적 유사성을 기반으로 정보를 압축해 나가는 방식이 문서 추출 요약에서 중요한 접근 방법임을 확인하였다. 또한 빠르게 추출된 요약문을 기반으로 문서 생성요약단계를 효과적으로 수행할 수 있으리라 기대한다.

다변량 데이터와 순환 신경망을 이용한 젖소의 유방염 진단예측 방법 (Method for predicting the diagnosis of mastitis in cows using multivariate data and Recurrent Neural Network)

  • 박기철;이성훈;박재화
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권1호
    • /
    • pp.75-82
    • /
    • 2021
  • 젖소에 있어 유방염은 농가의 낙농 생산성을 저해하는 주된 요인이며 이를 해결하기 위해 지난동안 폭넓은 연구가 이루어졌다. 하지만 유방염에 대한 연구는 사후 진단에 국한되어왔으며 이마저도 단일 센서를 활용하는 것이 주류이다. 본 연구에서는 생체 데이터와 환경 데이터를 이용하여 다음 날의 유방염 발병여부를 예측하는 모델을 개발하였다. 데이터는 충청남도 농가에 설치된 착유기와 센서들로부터 수집되었으며 3주간의 데이터를 다변량 데이터로 구성하였다. 유방염 진단예측을 위해 순환 신경망 모델을 사용하였고, 그 결과 유방염을 82.9%의 정확도로 예측하였다. 데이터 수집 기간을 다양하게 하여 예측 성능을 비교하였고 여러 모델과 성능을 비교하여 모델의 우수성을 확인하였다.

합성곱신경망을 이용한 초분광영상기반 토양수분예측 (Soil Moisture Prediction Based on Hyperspectral Image using CNN(Convolution Neural Network))

  • 전남열;이봉규
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권2호
    • /
    • pp.75-81
    • /
    • 2021
  • 식물의 생육은 수분에 의해서 크게 좌우되기 때문에 토양이 재배하는 식물에 최적의 수분을 가지도록 조절하는 것은 중요하다. 최근 초분광영상을 통하여 식물의 생육정보를 자동으로 분석하는 연구가 진행되고 있으며 토양의 수분함량을 측정하는 것도 포함한다. 그러나 초분광의 경우 많은 분광밴드에서 나타나는 방대한 데이터로 인하여 분석과정이 복잡하기 때문에 사용이 어렵다. 본 논문에서는 초분광영상의 복잡도를 합성곱신경망 (Convolution Neural Network, CNN)을 통하여 해결하는 방법을 제안한다. 제안한 방법은 대상 초분광의 전체 대역을 심층학습방법을 사용하여 자동 분석하기 때문에 각 영상에 대해 인식에 필요한 특정 대역을 찾는 노력을 할 필요가 없다. 제안 시스템의 유효성을 보이기 위해서 토양에서 얻은 초분광영상을 이용한 수분함량분석 실험을 수행하고 결과를 보인다.

Computerized bone age estimation system based on China-05 standard

  • Yin, Chuangao;Zhang, Miao;Wang, Chang;Lin, Huihui;Li, Gengwu;Zhu, Lichun;Fei, Weimin;Wang, Xiaoyu
    • Advances in nano research
    • /
    • 제12권2호
    • /
    • pp.197-212
    • /
    • 2022
  • The purpose of this study is to develop an automatic software system for bone age evaluation and to evaluate its accuracy in testing and feasibility in clinical practice. 20394 left-hand radiographs of healthy children (2-18 years old) were collected from China Skeletal Development Survey data of 1998 and China Skeletal Development Survey data of 2005. Three experienced radiologists and China-05 standard maker jointly evaluate the stages of bone development and the reference bone age was determined by consensus. 1020 from 20394 radiographs were picked randomly as test set and the remaining 19374 radiographs as training set and validation set. Accuracy of the automatic software system for bone age assessment is evaluated in test set and two clinical test sets. Compared with the reference standard, the automatic software system based on RUS-CHN for bone age assessment has a 0.04 years old mean difference, ±0.40 years old in 95% confidence interval by single reading, a 85.6% percentage agreement of ratings, a 93.7% bone age accuracy rate, 0.17 years old of MAD, 0.29 years old of RMS; Compared with the reference standard, the automatic software system based on TW3-C RUS has a 0.04 years old mean difference, a ±0.38 years old in 95% confidence interval by single reading, a 90.9% percentage agreement of ratings, a 93.2% bone age accuracy rate, a 0.16 years of MAD, and a 0.28 years of RMS. Automatic software system, AI-China-05 showed reliably accuracy in bone age estimation and steady determination in different clinical test sets.

Towards Low Complexity Model for Audio Event Detection

  • Saleem, Muhammad;Shah, Syed Muhammad Shehram;Saba, Erum;Pirzada, Nasrullah;Ahmed, Masood
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.175-182
    • /
    • 2022
  • In our daily life, we come across different types of information, for example in the format of multimedia and text. We all need different types of information for our common routines as watching/reading the news, listening to the radio, and watching different types of videos. However, sometimes we could run into problems when a certain type of information is required. For example, someone is listening to the radio and wants to listen to jazz, and unfortunately, all the radio channels play pop music mixed with advertisements. The listener gets stuck with pop music and gives up searching for jazz. So, the above example can be solved with an automatic audio classification system. Deep Learning (DL) models could make human life easy by using audio classifications, but it is expensive and difficult to deploy such models at edge devices like nano BLE sense raspberry pi, because these models require huge computational power like graphics processing unit (G.P.U), to solve the problem, we proposed DL model. In our proposed work, we had gone for a low complexity model for Audio Event Detection (AED), we extracted Mel-spectrograms of dimension 128×431×1 from audio signals and applied normalization. A total of 3 data augmentation methods were applied as follows: frequency masking, time masking, and mixup. In addition, we designed Convolutional Neural Network (CNN) with spatial dropout, batch normalization, and separable 2D inspired by VGGnet [1]. In addition, we reduced the model size by using model quantization of float16 to the trained model. Experiments were conducted on the updated dataset provided by the Detection and Classification of Acoustic Events and Scenes (DCASE) 2020 challenge. We confirm that our model achieved a val_loss of 0.33 and an accuracy of 90.34% within the 132.50KB model size.

AIoT 기반 고위험 산업안전관리시스템 인공지능 연구 (AIoT-based High-risk Industrial Safety Management System of Artificial Intelligence)

  • 여성구;박대우
    • 한국정보통신학회논문지
    • /
    • 제26권9호
    • /
    • pp.1272-1278
    • /
    • 2022
  • 정부는 2021년 1월에 '중대재해처벌법'을 제정 공포하여, 이 법을 시행하고 있다. 하지만, 2021년 산업재해 사고자수가 전년 동기 대비 10.7% 증가하였다. 따라서, 산업 현장에서는 안전대책이 시급한 현실이다. 본 연구에서는 통신 환경이 열악한 고위험 산업현장의 안전관리를 위하여 BLE Mesh 네트워킹 기술을 적용한다. 복합 센서 AIoT 디바이스로 가스 센싱값, 음성, 모션값을 실시간으로 수집하여, 인공지능 LSTM 알고리즘과 CNN 알고리즘을 통해 정보값을 분석하여 위험 상황을 인식하고, 서버에 전송한다. 서버에서는 전송 받은 위험정보를 실시간으로 모니터링 하여 즉각적인 구호조치가 수행되도록 한다. 본 연구에서 제안하는 AIoT 디바이스와 안전관리 시스템을 고위험군 산업 현장에 적용함으로써, 산업재해를 최소화하고 사회안전망 확대에도 기여할 것이다.

Abnormality Detection Method of Factory Roof Fixation Bolt by Using AI

  • Kim, Su-Min;Sohn, Jung-Mo
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.33-40
    • /
    • 2022
  • 본 연구는 판넬형 공장 지붕의 드론 촬영 이미지를 분석해 볼트의 이상 탐지를 수행하는 시스템을 제안한다. 지붕의 점검은 현재 점검자가 직접 지붕 위로 올라가 점검을 진행한다. 하지만 고소 작업 환경으로 인한 안전사고가 지속해서 발생하고 있어 새로운 대안이 필요하다. 이에, 최근 위험 환경의 점검 방안의 대안으로 대두되는 드론 촬영의 결과물을 딥러닝을 이용해 이상 볼트의 위치를 찾아내는 방안을 통해 손쉽게 점검할 수 있도록 한다. 본 연구에서 제안하고 있는 시스템은 촬영된 드론 이미지를 볼트캡이 풀려있는 상황에 대한 샘플 이미지를 사용해 스캐닝을 진행한다. 더 나아가 스캔 된 위치에 대해 AI를 사용해 판별해 정확하게 볼트 이상 여부를 판별한다. 본 연구에서 사용한 AI는 VGGNet 기반으로 정확도 99%의 테스트 결과를 보였다.

LSTM 모델을 이용한 조각투자 상품의 가격 예측: 뮤직카우를 중심으로 (Price Prediction of Fractional Investment Products Using LSTM Algorithm: Focusing on Musicow)

  • 정현조;이재환;서지혜
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.81-94
    • /
    • 2022
  • 최근 고액의 실물자산이나 채권을 분할하여 여러 투자자가 공동으로 투자하는 이른바 조각투자가 인기를 얻고 있다. 2016년 설립된 뮤직카우는 음원 유통에 따른 저작권료 참여 청구권을 조각투자할 수 있는 서비스를 세계 최초로 시작하였다. 본 연구에서는 딥러닝 알고리즘 중 하나인 LSTM 모델을 사용하여 뮤직카우에서 거래되는 저작권료 참여 청구권의 가격을 예측하는 연구를 진행하였다. 청구권의 이전 가격과 거래량, 저작권료와 같은 청구권과 관련된 변수 외에도, 음악저작권료 참여 청구권 시장 상황을 나타내는 종합 지표와 경제 상황을 반영하는 환율, 국고채 금리, 한국종합주가지수도 변수로 사용하였다. 연구 결과 상대적으로 거래량이 낮은 조각투자의 사례에서도 LSTM 모델이 거래가격을 잘 예측하는 것을 확인할 수 있었다.