• Title/Summary/Keyword: deep-learning

Search Result 5,679, Processing Time 0.028 seconds

A Study on the Image-Based Malware Classification System that Combines Image Preprocessing and Ensemble Techniques for High Accuracy (높은 정확도를 위한 이미지 전처리와 앙상블 기법을 결합한 이미지 기반 악성코드 분류 시스템에 관한 연구)

  • Kim, Hae Soo;Kim, Mi Hui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.225-232
    • /
    • 2022
  • Recent development in information and communication technology has been beneficial to many, but at the same time, malicious attack attempts are also increasing through vulnerabilities in new programs. Among malicious attacks, malware operate in various ways and is distributed to people in new ways every time, and to solve this malware, it is necessary to quickly analyze and provide defense techniques. If new malware can be classified into the same type of malware, malware has similar behavioral characteristics, so they can provide defense techniques for new malware using analyzed malware. Therefore, there is a need for a solution to this because the method of accurately and quickly classifying malware and the number of data may not be uniform for each family of analyzed malware. This paper proposes a system that combines image preprocessing and ensemble techniques to increase accuracy in imbalanced data.

Analysis of Burned Areas in North Korea Using Satellite-based Wildfire Damage Indices (위성기반 산불피해지수를 이용한 북한지역 산불피해지 분석)

  • Kim, Seoyeon;Youn, Youjeong;Jeong, Yemin;Kwon, Chunguen;Seo, Kyungwon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1861-1869
    • /
    • 2022
  • Recent climate change can increase the frequency and damage of wildfires worldwide. It can also lead to the deterioration of the forest ecosystem and increase casualties and economic loss. Satellite-based indices for forest damage can facilitate an objective and rapid examination of burned areas and help analyze inaccessible places like North Korea. In this letter, we conducted a detection of burned areas in North Korea using the traditional Normalized Burn Ratio (NBR), the Normalized Difference Vegetation Index (NDVI) to represent vegetation vitality, and the Fire Burn Index (FBI) and Forest Withering Index (FWI) that were recently developed. Also, we suggested a strategy for the satellite-based detection of burned areas in the Korean Peninsula as a result of comparing the four indices. Future work requires the examination of small-size wildfires and the applicability of deep learning technologies.

Development of an intelligent edge computing device equipped with on-device AI vision model (온디바이스 AI 비전 모델이 탑재된 지능형 엣지 컴퓨팅 기기 개발)

  • Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.17-22
    • /
    • 2022
  • In this paper, we design a lightweight embedded device that can support intelligent edge computing, and show that the device quickly detects an object in an image input from a camera device in real time. The proposed system can be applied to environments without pre-installed infrastructure, such as an intelligent video control system for industrial sites or military areas, or video security systems mounted on autonomous vehicles such as drones. The On-Device AI(Artificial intelligence) technology is increasingly required for the widespread application of intelligent vision recognition systems. Computing offloading from an image data acquisition device to a nearby edge device enables fast service with less network and system resources than AI services performed in the cloud. In addition, it is expected to be safely applied to various industries as it can reduce the attack surface vulnerable to various hacking attacks and minimize the disclosure of sensitive data.

Comparison of solar power prediction model based on statistical and artificial intelligence model and analysis of revenue for forecasting policy (통계적 및 인공지능 모형 기반 태양광 발전량 예측모델 비교 및 재생에너지 발전량 예측제도 정산금 분석)

  • Lee, Jeong-In;Park, Wan-Ki;Lee, Il-Woo;Kim, Sang-Ha
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.355-363
    • /
    • 2022
  • Korea is pursuing a plan to switch and expand energy sources with a focus on renewable energy with the goal of becoming carbon neutral by 2050. As the instability of energy supply increases due to the intermittent nature of renewable energy, accurate prediction of the amount of renewable energy generation is becoming more important. Therefore, the government has opened a small-scale power brokerage market and is implementing a system that pays settlements according to the accuracy of renewable energy prediction. In this paper, a prediction model was implemented using a statistical model and an artificial intelligence model for the prediction of solar power generation. In addition, the results of prediction accuracy were compared and analyzed, and the revenue from the settlement amount of the renewable energy generation forecasting system was estimated.

Development of an intelligent camera for multiple body temperature detection (다중 체온 감지용 지능형 카메라 개발)

  • Lee, Su-In;Kim, Yun-Su;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.430-436
    • /
    • 2022
  • In this paper, we propose an intelligent camera for multiple body temperature detection. The proposed camera is composed of optical(4056*3040) and thermal(640*480), which detects abnormal symptoms by analyzing a person's facial expression and body temperature from the acquired image. The optical and thermal imaging cameras are operated simultaneously and detect an object in the optical image, in which the facial region and expression analysis are calculated from the object. Additionally, the calculated coordinate values from the optical image facial region are applied to the thermal image, also the maximum temperature is measured from the region and displayed on the screen. Abnormal symptom detection is determined by using the analyzed three facial expressions(neutral, happy, sadness) and body temperature values. In order to evaluate the performance of the proposed camera, the optical image processing part is tested on Caltech, WIDER FACE, and CK+ datasets for three algorithms(object detection, facial region detection, and expression analysis). Experimental results have shown 91%, 91%, and 84% accuracy scores each.

Generation of Masked Face Image Using Deep Convolutional Autoencoder (컨볼루션 오토인코더를 이용한 마스크 착용 얼굴 이미지 생성)

  • Lee, Seung Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1136-1141
    • /
    • 2022
  • Researches of face recognition on masked faces have been increasingly important due to the COVID-19 pandemic. To realize a stable and practical recognition performance, large amount of facial image data should be acquired for the purpose of training. However, it is difficult for the researchers to obtain masked face images for each human subject. This paper proposes a novel method to synthesize a face image and a virtual mask pattern. In this method, a pair of masked face image and unmasked face image, that are from a single human subject, is fed into a convolutional autoencoder as training data. This allows learning the geometric relationship between face and mask. In the inference step, for a unseen face image, the learned convolutional autoencoder generates a synthetic face image with a mask pattern. The proposed method is able to rapidly generate realistic masked face images. Also, it could be practical when compared to methods which rely on facial feature point detection.

The Improvement of the LIDAR System of the School Zone Applying Artificial Intelligence (인공지능을 적용한 스쿨존의 LIDAR 시스템 개선 연구)

  • Park, Moon-Soo;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1248-1254
    • /
    • 2022
  • Efforts are being made to prevent traffic accidents in the school zone in advance. However, traffic accidents in school zones continue to occur. If the driver can know the situation information in the child protection area in advance, accidents can be reduced. In this paper, we design a camera that eliminates blind spots in school zones and a number recognition camera system that can collect pre-traffic information. It is designed by improving the LIDAR system that recognizes vehicle speed and pedestrians. It collects and processes pedestrian and vehicle image information recognized by cameras and LIDAR, and applies artificial intelligence time series analysis and artificial intelligence algorithms. The artificial intelligence traffic accident prevention system learned by deep learning proposed in this paper provides a forced push service that delivers school zone information to the driver to the mobile device in the vehicle before entering the school zone. In addition, school zone traffic information is provided as an alarm on the LED signboard.

Boundary-Aware Dual Attention Guided Liver Segment Segmentation Model

  • Jia, Xibin;Qian, Chen;Yang, Zhenghan;Xu, Hui;Han, Xianjun;Ren, Hao;Wu, Xinru;Ma, Boyang;Yang, Dawei;Min, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.16-37
    • /
    • 2022
  • Accurate liver segment segmentation based on radiological images is indispensable for the preoperative analysis of liver tumor resection surgery. However, most of the existing segmentation methods are not feasible to be used directly for this task due to the challenge of exact edge prediction with some tiny and slender vessels as its clinical segmentation criterion. To address this problem, we propose a novel deep learning based segmentation model, called Boundary-Aware Dual Attention Liver Segment Segmentation Model (BADA). This model can improve the segmentation accuracy of liver segments with enhancing the edges including the vessels serving as segment boundaries. In our model, the dual gated attention is proposed, which composes of a spatial attention module and a semantic attention module. The spatial attention module enhances the weights of key edge regions by concerning about the salient intensity changes, while the semantic attention amplifies the contribution of filters that can extract more discriminative feature information by weighting the significant convolution channels. Simultaneously, we build a dataset of liver segments including 59 clinic cases with dynamically contrast enhanced MRI(Magnetic Resonance Imaging) of portal vein stage, which annotated by several professional radiologists. Comparing with several state-of-the-art methods and baseline segmentation methods, we achieve the best results on this clinic liver segment segmentation dataset, where Mean Dice, Mean Sensitivity and Mean Positive Predicted Value reach 89.01%, 87.71% and 90.67%, respectively.

Single Shot Detector for Detecting Clickable Object in Mobile Device Screen (모바일 디바이스 화면의 클릭 가능한 객체 탐지를 위한 싱글 샷 디텍터)

  • Jo, Min-Seok;Chun, Hye-won;Han, Seong-Soo;Jeong, Chang-Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • We propose a novel network architecture and build dataset for recognizing clickable objects on mobile device screens. The data was collected based on clickable objects on the mobile device screen that have numerous resolution, and a total of 24,937 annotation data were subdivided into seven categories: text, edit text, image, button, region, status bar, and navigation bar. We use the Deconvolution Single Shot Detector as a baseline, the backbone network with Squeeze-and-Excitation blocks, the Single Shot Detector layer structure to derive inference results and the Feature pyramid networks structure. Also we efficiently extract features by changing the input resolution of the existing 1:1 ratio of the network to a 1:2 ratio similar to the mobile device screen. As a result of experimenting with the dataset we have built, the mean average precision was improved by up to 101% compared to baseline.

Compression of DNN Integer Weight using Video Encoder (비디오 인코더를 통한 딥러닝 모델의 정수 가중치 압축)

  • Kim, Seunghwan;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.778-789
    • /
    • 2021
  • Recently, various lightweight methods for using Convolutional Neural Network(CNN) models in mobile devices have emerged. Weight quantization, which lowers bit precision of weights, is a lightweight method that enables a model to be used through integer calculation in a mobile environment where GPU acceleration is unable. Weight quantization has already been used in various models as a lightweight method to reduce computational complexity and model size with a small loss of accuracy. Considering the size of memory and computing speed as well as the storage size of the device and the limited network environment, this paper proposes a method of compressing integer weights after quantization using a video codec as a method. To verify the performance of the proposed method, experiments were conducted on VGG16, Resnet50, and Resnet18 models trained with ImageNet and Places365 datasets. As a result, loss of accuracy less than 2% and high compression efficiency were achieved in various models. In addition, as a result of comparison with similar compression methods, it was verified that the compression efficiency was more than doubled.