• Title/Summary/Keyword: deep-learning

Search Result 5,680, Processing Time 0.034 seconds

An Efficient Deep Learning Based Image Recognition Service System Using AWS Lambda Serverless Computing Technology (AWS Lambda Serverless Computing 기술을 활용한 효율적인 딥러닝 기반 이미지 인식 서비스 시스템)

  • Lee, Hyunchul;Lee, Sungmin;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.6
    • /
    • pp.177-186
    • /
    • 2020
  • Recent advances in deep learning technology have improved image recognition performance in the field of computer vision, and serverless computing is emerging as the next generation cloud computing technology for event-based cloud application development and services. Attempts to use deep learning and serverless computing technology to increase the number of real-world image recognition services are increasing. Therefore, this paper describes how to develop an efficient deep learning based image recognition service system using serverless computing technology. The proposed system suggests a method that can serve large neural network model to users at low cost by using AWS Lambda Server based on serverless computing. We also show that we can effectively build a serverless computing system that uses a large neural network model by addressing the shortcomings of AWS Lambda Server, cold start time and capacity limitation. Through experiments, we confirmed that the proposed system, using AWS Lambda Serverless Computing technology, is efficient for servicing large neural network models by solving processing time and capacity limitations as well as cost reduction.

Deep Learning Based Error Control in Electric Vehicle Charging Systems Using Power Line Communication (전력선 통신을 이용한 전기자동차 충전 시스템에서 딥 러닝 기반 오류제어)

  • Sun, Young Ghyu;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.150-158
    • /
    • 2018
  • In this paper, we introduce an electric vehicle charging system using power line communication and propose a method to correct the error by applying a deep learning algorithm when an error occurs in the control signal of an electric vehicle charging system using power line communication. The error detection and correction of the control signal can be solved through the conventional error correcting code schemes, but the error is detected and corrected more efficiently by using the deep learning based error correcting code scheme. Therefore, we introduce deep learning based error correction code scheme and apply this scheme to electric vehicle charging system using power line communication. we proceed simulation and confirm performance with bit error rate. we judge whether the deep learning based error correction code scheme is more effective than the conventional schemes.

A Study for Development of Expressway Traffic Accident Prediction Model Using Deep Learning (딥 러닝을 이용한 고속도로 교통사고 건수 예측모형 개발에 관한 연구)

  • Rye, Jong-Deug;Park, Sangmin;Park, Sungho;Kwon, Cheolwoo;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.14-25
    • /
    • 2018
  • In recent years, it has become technically easier to explain factors related with traffic accidents in the Big Data era. Therefore, it is necessary to apply the latest analysis techniques to analyze the traffic accident data and to seek for new findings. The purpose of this study is to compare the predictive performance of the negative binomial regression model and the deep learning method developed in this study to predict the frequency of traffic accidents in expressways. As a result, the MOEs of the deep learning model are somewhat superior to those of the negative binomial regression model in terms of prediction performance. However, using a deep learning model could increase the predictive reliability. However, it is easy to add other independent variables when using deep learning, and it can be expected to increase the predictive reliability even if the model structure is changed.

A novel on Data Prediction Process using Deep Learning based on R (R기반의 딥 러닝을 이용한 데이터 예측 프로세스에 관한 연구)

  • Jung, Se-hoon;Kim, Jong-chan;Park, Hong-joon;So, Won-ho;Sim, Chun-bo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.421-422
    • /
    • 2015
  • Deep learning, a deepen neural network technology that demonstrates the enhanced performance of neural network analysis, has been getting the spotlight in recent years. The present study proposed a process to test the error rates of certain variables and predict big data by using R, a analysis visualization tool based on deep learning, applying the RBM(Restricted Boltzmann Machine) algorithm to deep learning. The weighted value of each dependent variable was also applied after the classification of dependent variables. The investigator tested input data with the RBM algorithm and designed a process to detect error rates with the application of R.

  • PDF

Deployment of Network Resources for Enhancement of Disaster Response Capabilities with Deep Learning and Augmented Reality (딥러닝 및 증강현실을 이용한 재난대응 역량 강화를 위한 네트워크 자원 확보 방안)

  • Shin, Younghwan;Yun, Jusik;Seo, Sunho;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.69-77
    • /
    • 2017
  • In this paper, a disaster response scheme based on deep learning and augmented reality technology is proposed and a network resource reservation scheme is presented accordingly. The features of deep learning, augmented reality technology and its relevance to the disaster areas are explained. Deep learning technology can be used to accurately recognize disaster situations and to implement related disaster information as augmented reality, and to enhance disaster response capabilities by providing disaster response On-site disaster response agent, ICS (Incident Command System) and MCS (Multi-agency Coordination Systems). In the case of various disasters, the fire situation is focused on and it is proposed that a plan to strengthen disaster response capability effectively by providing fire situation recognition based on deep learning and augmented reality information. Finally, a scheme to secure network resources to utilize the disaster response method of this paper is proposed.

Deep learning based symbol recognition for the visually impaired (시각장애인을 위한 딥러닝기반 심볼인식)

  • Park, Sangheon;Jeon, Taejae;Kim, Sanghyuk;Lee, Sangyoun;Kim, Juwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.249-256
    • /
    • 2016
  • Recently, a number of techniques to ensure the free walking for the visually impaired and transportation vulnerable have been studied. As a device for free walking, there are such as a smart cane and smart glasses to use the computer vision, ultrasonic sensor, acceleration sensor technology. In a typical technique, such as techniques for finds object and detect obstacles and walking area and recognizes the symbol information for notice environment information. In this paper, we studied recognization algorithm of the selected symbols that are required to visually impaired, with the deep learning algorithm. As a results, Use CNN(Convolutional Nueral Network) technique used in the field of deep-learning image processing, and analyzed by comparing through experimentation with various deep learning architectures.

A fully deep learning model for the automatic identification of cephalometric landmarks

  • Kim, Young Hyun;Lee, Chena;Ha, Eun-Gyu;Choi, Yoon Jeong;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • v.51 no.3
    • /
    • pp.299-306
    • /
    • 2021
  • Purpose: This study aimed to propose a fully automatic landmark identification model based on a deep learning algorithm using real clinical data and to verify its accuracy considering inter-examiner variability. Materials and Methods: In total, 950 lateral cephalometric images from Yonsei Dental Hospital were used. Two calibrated examiners manually identified the 13 most important landmarks to set as references. The proposed deep learning model has a 2-step structure-a region of interest machine and a detection machine-each consisting of 8 convolution layers, 5 pooling layers, and 2 fully connected layers. The distance errors of detection between 2 examiners were used as a clinically acceptable range for performance evaluation. Results: The 13 landmarks were automatically detected using the proposed model. Inter-examiner agreement for all landmarks indicated excellent reliability based on the 95% confidence interval. The average clinically acceptable range for all 13 landmarks was 1.24 mm. The mean radial error between the reference values assigned by 1 expert and the proposed model was 1.84 mm, exhibiting a successful detection rate of 36.1%. The A-point, the incisal tip of the maxillary and mandibular incisors, and ANS showed lower mean radial error than the calibrated expert variability. Conclusion: This experiment demonstrated that the proposed deep learning model can perform fully automatic identification of cephalometric landmarks and achieve better results than examiners for some landmarks. It is meaningful to consider between-examiner variability for clinical applicability when evaluating the performance of deep learning methods in cephalometric landmark identification.

Production of agricultural weather information by Deep Learning (심층신경망을 이용한 농업기상 정보 생산방법)

  • Yang, Miyeon;Yoon, Sanghoo
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.293-299
    • /
    • 2018
  • The weather has a lot of influence on the cultivation of crops. Weather information on agricultural crop cultivation areas is indispensable for efficient cultivation and management of agricultural crops. Despite the high demand for agricultural weather, research on this is in short supply. In this research, we deal with the production method of agricultural weather in Jeollanam-do, which is the main production area of onions through GloSea5 and deep learning. A deep neural network model using the sliding window method was used and utilized to train daily weather prediction for predicting the agricultural weather. RMSE and MAE are used for evaluating the accuracy of the model. The accuracy improves as the learning period increases, so we compare the prediction performance according to the learning period and the prediction period. As a result of the analysis, although the learning period and the prediction period are similar, there was a limit to reflect the trend according to the seasonal change. a modified deep layer neural network model was presented, that applying the difference between the predicted value and the observed value to the next day predicted value.

A Review on Deep Learning Platform for Artificial Intelligence (인공지능 딥러링 학습 플랫폼에 관한 선행연구 고찰)

  • Jin, Chan-Yong;Shin, Seong-Yoon;Nam, Soo-Tai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.169-170
    • /
    • 2019
  • Lately, as artificial intelligence becomes a source of global competitiveness, the government is strategically fostering artificial intelligence that is the base technology of future new industries such as autonomous vehicles, drones, and robots. Domestic artificial intelligence research and services have been launched mainly in Naver and Kakao, but their size and level are weak compared to overseas. Recently, deep learning has been conducted in recent years while recording innovative performance in various pattern recognition fields including speech recognition and image recognition. In addition, deep running has attracted great interest from industry since its inception, and global information technology companies such as Google, Microsoft, and Samsung have successfully applied deep learning technology to commercial products and are continuing research and development. Therefore, we will look at artificial intelligence which is attracting attention based on previous research.

  • PDF

Evaluation of the Usefulness of Detection of Abdominal CT Kidney and Vertebrae using Deep Learning (딥러닝을 이용한 복부 CT 콩팥과 척추 검출 유용성 평가)

  • Lee, Hyun-Jong;kwak, Myeong-Hyeun;Yoon, Hye-Won;Ryu, Eun-Jin;Song, Hyeon-Gyeong;Hong, Joo-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.15-20
    • /
    • 2021
  • CT is important role in the medical field, such as disease diagnosis, but the number of examination and CT images are increasing. Recently, deep learning has been actively used in the medical field, and it has been used to diagnose auxiliary disease through object detection during deep learning using medical images. The purpose of study to evaluate accuracy by detecting kidney and vertebrae during abdominal CT using object detection deep learning in YOLOv3. As a results of the study, the detection accuracy of the kidney and vertebrae was 83.00%, 82.45%, and can be used as basic data for the object detection of medical images using deep learning.