• Title/Summary/Keyword: deep repository

Search Result 135, Processing Time 0.024 seconds

A Study on GIS Component Classification considering Functional/Non-Functional Elements (기능적/비기능적 요소를 고려한 GIS 컴포넌트 분류에 관한 연구)

  • Jo, Yun-Won;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.3
    • /
    • pp.77-86
    • /
    • 2002
  • Recently software industry in GIS(geographic information system) becomes an interesting issue by performing a large scale of national GIS application development as well as even small unit of FMS(facility management system). Also, there exist many cases to combine GIS with various business domains such as MIS(marketing information system), CNS(car navigation system) and ITS(intelligent transportation system). In this situation, in order to develop an efficient and useful GIS application for a short term, there must be a deep consideration of not only developing GIS component but also managing GIS component. In fact, even though there exist many certain components having high reusability, excellent interoperability and good quality, their reusability may be reduced because of their difficulty to access in a certain repository. Therefore, it is important to classify components having common characteristic based on their particular rule with reflecting their functionality and non-functionality before cataloging them. Here, there are two non-functional classification categories discussed such as GIS content-dependent metadata and GIS content-independent metadata. This cataloged components will help application developers to select easily their desired components. Moreover, new components may be easily producted by modifying and combining previous components. Finally, the original goal of all this effort can be defined through obtaining high reusability and interoperability of GIS component.

  • PDF

An Influence Analysis on the Gap Space of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭 공간이 미치는 영향 분석)

  • Yoon, Seok;Lee, Changsoo;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.4
    • /
    • pp.19-26
    • /
    • 2021
  • The high-level radioactive waste (HLW) produced from nuclear power plants is disposed in a rock-mass at a depth of hundreds meters below the ground level. Since HLW is very dangerous to human being, it must be disposed of safely by the engineered barrier system (EBS). The EBS consists of a disposal canister, backfill material, buffer material, and so on. When the components of EBS are installed, gaps inevitably exist not only between the rock-mass and buffer material but also between the canister and buffer material. The gap can reduce water-retarding capacity and heat release efficiency of the buffer material, so it is necessary to investigate properties of gap-filling materials and to analyze gap spacing effect. Furthermore, there has been few researches considering domestic disposal system compared to overseas researches. In this reason, this research derived the peak temperature of the bentonite buffer material considering domestic disposal system based on the numerical analysis. The gap between the canister and buffer material had a minor effect on the peak temperature of the bentonite buffer material, but there was 40% difference of the peak temperature of the bentonite buffer material because of the gap existence between the buffer material and rock mass.

Analysis of Overseas Data Management Systems for High Level Radioactive Waste Disposal (고준위방사성폐기물 처분 관련 자료 관리 해외사례 분석)

  • MinJeong Kim;SunJu Park;HyeRim Kim;WoonSang Yoon;JungHoon Park;JeongHwan Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.323-334
    • /
    • 2023
  • The vast volumes of data that are generated during site characterization and associated research for the disposal of high-level radioactive waste require effective data management to properly chronicle and archive this information. The Swedish Nuclear Fuel and Waste Management Company, SKB, established the SICADA database for site selection, evaluation, analysis, and modeling. The German Federal Company for Radioactive Waste Disposal, BGE, established ArbeitsDB, a database and document management system, and the ELO data system to manage data collected according to the Repository Site Selection Act. The U.K. Nuclear Waste Services established the Data Management System to manage any research and survey data pertaining to nuclear waste storage and disposal. The U.S. Department of Energy and Office of Civilian Radioactive Waste Management established the Technical Data Management System for data management and subsequent licensing procedures during site characterization surveys. The presented cases undertaken by these national agencies highlight the importance of data quality management and the scalability of data utilization to ensure effective data management. Korea should also pursue the establishment of both a data management concept for radioactive waste disposal that considers data quality management and scalability from a long-term perspective and an associated data management system.

A Structural Analysis of the SNF(Spent Nuclear Fuel) Disposal Canister with the SNF Basket Section Shape Change for the Pressurized Water Reactor(PWR) (고준위폐기물다발의 단면형상 변화에 따른 가압경수로(PWR)용 고준위폐기물 처분용기의 구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.37-49
    • /
    • 2012
  • A structural model of the SNF(spent nuclear fuel) disposal canister for the PWR(pressurized water reactor) for about 10,000 years long term deposition at a 500m deep granitic bedrock repository has been developed through various structural safety evaluations. The SNF disposal baskets of this canister model have the array type whose four square cross section baskets stand parallel to each other and symmetrically with respect to the center of the canister section. However, whether this developed structural model of the SNF disposal canister is optimal is not determinable yet. Especially, there is still a problem in weight-reduction of the canister. The cross section shape of the SNF basket should be changed to solve this problem. There are two ways in changing the cross section shape of the SNF basket; the one is to rotate the cross section itself and the other is to change the cross section shape as other shape different from the square cross section. The previous study shows that the canister with $30{\sim}35^{\circ}$ rotated basket array is structurally more stable than the canister with un-rotated parallel basket array. However, whether this canister with rotated basket array is optimal is not either determinable as yet, because it is not revealed that the canister with other cross section different from the square cross section is structurally more stable than other canisters. Therefore, the structural analysis of the SNF disposal canister with other cross section shape which is also symmetric with respect to the canister center planes is very necessary. The structural analysis of the canister with various cross section shape basket array in which each basket is arrayed symmetrically with respect to the center planes is carried out in this paper. The structural analysis result shows that the SNF disposal canister with circular cross section shape baskets located symmetrically with respect to the center of the canister section is structurally more stable than the previously developed SNF disposal canister with the parallel basket array.

A Structural Analysis of the Spent Nuclear Fuel Disposal Canister with the Spent Nuclear Fuel Basket Array Change for the Pressurized Water Reactor(PWR) (고준위폐기물 다발의 배열구조변화에 따른 가압경수로(PWR)용 고준위폐기물 처분용기의 구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.289-301
    • /
    • 2010
  • A structural model of the SNF(spent nuclear fuel) disposal canister for the PWR(pressurized water reactor) for about 10,000 years long term deposition at a 500m deep granitic bedrock repository has been developed through various structural safety evaluations. The SNF disposal baskets of this canister model have the array type of which four square cross section baskets stand parallel to each other and symmetrically with respect to the center of the canister section. However whether this developed structural model of the SNF disposal canister is best is not determinable yet, because the SNF disposal canister with this parallel array has a limitation in shortening the diameter for the weight reduction due to the shortest distance between the outer corner of the square section and the outer shell. Therefore, the structural safety evaluation of the SNF disposal canister with the rotated basket array which is also symmetric with respect to the canister center planes is very necessary. Even though such a canister model has not been found as yet in the literature, the structural analysis of the canister with the rotated basket array for the PWR is required for the comparative study of the structural safety of canister models. Hence, the structural analysis of the canister with the rotated basket array in which each basket is rotated with a certain amount of degrees around the center of the basket itself and arrayed symmetrically with respect to the center planes is carried out in this paper. The structural analysis result shows that the SNF disposal canister with the rotated basket array in which the SNF disposal basket is rotated as 30~35 degrees around the center of the basket itself is structurally more stable than the previously developed SNF disposal canister with the parallel basket array.