• 제목/요약/키워드: deep neural networks

검색결과 851건 처리시간 0.024초

Deep Structured Learning: Architectures and Applications

  • Lee, Soowook
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.262-265
    • /
    • 2018
  • Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.

심층 신경회로망을 이용한 엔드밀 가공의 절삭 조건 개선 (Improvement of Cutting Conditions in End-milling Using Deep-layered Neural Networks)

  • 이신영
    • 한국생산제조학회지
    • /
    • 제26권4호
    • /
    • pp.402-409
    • /
    • 2017
  • Selection of optimal cutting conditions is important for improving productivity and implementing efficient process control in metal machining. In this study, improvement of cutting conditions in machining using end-mills is studied by using deep-layered neural networks, which comprise an input layer, output layer, and two hidden layers. System networks are designed with inputs as cutting conditions, and they output the cutting force. A pseudo-inverse network is designed that has the adjustable cutting condition as output and cutting force and other cutting conditions as input. The combination of the system network and pseudo-inverse network enables selection or improvement of cutting conditions that results in the expected cutting force.

Comparison of Hyper-Parameter Optimization Methods for Deep Neural Networks

  • Kim, Ho-Chan;Kang, Min-Jae
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.969-974
    • /
    • 2020
  • Research into hyper parameter optimization (HPO) has recently revived with interest in models containing many hyper parameters, such as deep neural networks. In this paper, we introduce the most widely used HPO methods, such as grid search, random search, and Bayesian optimization, and investigate their characteristics through experiments. The MNIST data set is used to compare results in experiments to find the best method that can be used to achieve higher accuracy in a relatively short time simulation. The learning rate and weight decay have been chosen for this experiment because these are the commonly used parameters in this kind of experiment.

ONNX기반 스파이킹 심층 신경망 변환 도구 (Conversion Tools of Spiking Deep Neural Network based on ONNX)

  • 박상민;허준영
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권2호
    • /
    • pp.165-170
    • /
    • 2020
  • 스파이킹 신경망은 기존 신경망과 다른 메커니즘으로 동작한다. 기존 신경망은 신경망을 구성하는 뉴런으로 들어오는 입력 값에 대해 생물학적 메커니즘을 고려하지 않은 활성화 함수를 거쳐 다음 뉴런으로 출력 값을 전달한다. 뿐만 아니라 VGGNet, ResNet, SSD, YOLO와 같은 심층 구조를 사용한 좋은 성과들이 있었다. 반면 스파이킹 신경망은 기존 활성화함수 보다 실제 뉴런의 생물학적 메커니즘과 유사하게 동작하는 방식이지만 스파이킹 뉴런을 사용한 심층구조에 대한 연구는 기존 뉴런을 사용한 심층 신경망과 비교해 활발히 진행되지 않았다. 본 논문은 기존 뉴런으로 만들어진 심층 신경망 모델을 변환 툴에 로드하여 기존 뉴런을 스파이킹 뉴런으로 대체하여 스파이킹 심층 신경망으로 변환하는 방법에 대해 제안한다.

컨볼루션 신경망을 기반으로 한 드론 영상 분류 (Drone Image Classification based on Convolutional Neural Networks)

  • 주영도
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.97-102
    • /
    • 2017
  • 최근 고해상도 원격탐사 자료의 분류방안으로 컨볼루션 신경망(Convolutional Neural Networks)을 비롯한 딥 러닝 기법들이 소개되고 있다. 본 논문에서는 드론으로 촬영된 농경지 영상의 작물 분류를 위해 컨볼루션 신경망을 적용하여 가능성을 검토하였다. 농경지를 논, 고구마, 고추, 옥수수, 깻잎, 과수, 비닐하우스로 총 7가지 클래스로 나누고 수동으로 라벨링 작업을 완료했다. 컨볼루션 신경망 적용을 위해 영상 전처리와 정규화 작업을 수행하였으며 영상분류 결과 98%이상 높은 정확도를 확인할 수 있었다. 본 논문을 통해 기존 영상분류 방법들에서 딥 러닝 기반 영상분류 방법으로의 전환이 빠르게 진행될 것으로 예상되며, 그 성공 가능성을 확신할 수 있었다.

딥러닝 기반의 프로세스 예측에 관한 연구: 동적 순환신경망을 중심으로 (Exploring process prediction based on deep learning: Focusing on dynamic recurrent neural networks)

  • 김정연;윤석준;이보경
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권4호
    • /
    • pp.115-128
    • /
    • 2018
  • Purpose The purpose of this study is to predict future behaviors of business process. Specifically, this study tried to predict the last activities of process instances. It contributes to overcoming the limitations of existing approaches that they do not accurately reflect the actual behavior of business process and it requires a lot of effort and time every time they are applied to specific processes. Design/methodology/approach This study proposed a novel approach based using deep learning in the form of dynamic recurrent neural networks. To improve the accuracy of our prediction model based on the approach, we tried to adopt the latest techniques including new initialization functions(Xavier and He initializations). The proposed approach has been verified using real-life data of a domestic small and medium-sized business. Findings According to the experiment result, our approach achieves better prediction accuracy than the latest approach based on the static recurrent neural networks. It is also proved that much less effort and time are required to predict the behavior of business processes.

A comparison of methods to reduce overfitting in neural networks

  • Kim, Ho-Chan;Kang, Min-Jae
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.173-178
    • /
    • 2020
  • A common problem with neural network learning is that it is too suitable for the specificity of learning. In this paper, various methods were compared to avoid overfitting: regularization, drop-out, different numbers of data and different types of neural networks. Comparative studies of the above-mentioned methods have been provided to evaluate the test accuracy. I found that the more data using method is better than the regularization and dropout methods. Moreover, we know that deep convolutional neural networks outperform multi-layer neural networks and simple convolution neural networks.

임베디드 시스템에서의 객체 분류를 위한 인공 신경망 경량화 연구 (Neural Network Model Compression Algorithms for Image Classification in Embedded Systems)

  • 신희중;오현동
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.133-141
    • /
    • 2022
  • This paper introduces model compression algorithms which make a deep neural network smaller and faster for embedded systems. The model compression algorithms can be largely categorized into pruning, quantization and knowledge distillation. In this study, gradual pruning, quantization aware training, and knowledge distillation which learns the activation boundary in the hidden layer of the teacher neural network are integrated. As a large deep neural network is compressed and accelerated by these algorithms, embedded computing boards can run the deep neural network much faster with less memory usage while preserving the reasonable accuracy. To evaluate the performance of the compressed neural networks, we evaluate the size, latency and accuracy of the deep neural network, DenseNet201, for image classification with CIFAR-10 dataset on the NVIDIA Jetson Xavier.

Deep learning convolutional neural network algorithms for the early detection and diagnosis of dental caries on periapical radiographs: A systematic review

  • Musri, Nabilla;Christie, Brenda;Ichwan, Solachuddin Jauhari Arief;Cahyanto, Arief
    • Imaging Science in Dentistry
    • /
    • 제51권3호
    • /
    • pp.237-242
    • /
    • 2021
  • Purpose: The aim of this study was to analyse and review deep learning convolutional neural networks for detecting and diagnosing early-stage dental caries on periapical radiographs. Materials and Methods: In order to conduct this review, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) guidelines were followed. Studies published from 2015 to 2021 under the keywords(deep convolutional neural network) AND (caries), (deep learning caries) AND (convolutional neural network) AND (caries) were systematically reviewed. Results: When dental caries is improperly diagnosed, the lesion may eventually invade the enamel, dentin, and pulp tissue, leading to loss of tooth function. Rapid and precise detection and diagnosis are vital for implementing appropriate prevention and treatment of dental caries. Radiography and intraoral images are considered to play a vital role in detecting dental caries; nevertheless, studies have shown that 20% of suspicious areas are mistakenly diagnosed as dental caries using this technique; hence, diagnosis via radiography alone without an objective assessment is inaccurate. Identifying caries with a deep convolutional neural network-based detector enables the operator to distinguish changes in the location and morphological features of dental caries lesions. Deep learning algorithms have broader and more profound layers and are continually being developed, remarkably enhancing their precision in detecting and segmenting objects. Conclusion: Clinical applications of deep learning convolutional neural networks in the dental field have shown significant accuracy in detecting and diagnosing dental caries, and these models hold promise in supporting dental practitioners to improve patient outcomes.

안정화된 딥 네트워크 구조를 위한 다항식 신경회로망의 연구 (A Study on Polynomial Neural Networks for Stabilized Deep Networks Structure)

  • 전필한;김은후;오성권
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1772-1781
    • /
    • 2017
  • In this study, the design methodology for alleviating the overfitting problem of Polynomial Neural Networks(PNN) is realized with the aid of two kinds techniques such as L2 regularization and Sum of Squared Coefficients (SSC). The PNN is widely used as a kind of mathematical modeling methods such as the identification of linear system by input/output data and the regression analysis modeling method for prediction problem. PNN is an algorithm that obtains preferred network structure by generating consecutive layers as well as nodes by using a multivariate polynomial subexpression. It has much fewer nodes and more flexible adaptability than existing neural network algorithms. However, such algorithms lead to overfitting problems due to noise sensitivity as well as excessive trainning while generation of successive network layers. To alleviate such overfitting problem and also effectively design its ensuing deep network structure, two techniques are introduced. That is we use the two techniques of both SSC(Sum of Squared Coefficients) and $L_2$ regularization for consecutive generation of each layer's nodes as well as each layer in order to construct the deep PNN structure. The technique of $L_2$ regularization is used for the minimum coefficient estimation by adding penalty term to cost function. $L_2$ regularization is a kind of representative methods of reducing the influence of noise by flattening the solution space and also lessening coefficient size. The technique for the SSC is implemented for the minimization of Sum of Squared Coefficients of polynomial instead of using the square of errors. In the sequel, the overfitting problem of the deep PNN structure is stabilized by the proposed method. This study leads to the possibility of deep network structure design as well as big data processing and also the superiority of the network performance through experiments is shown.