• 제목/요약/키워드: deep neural network

검색결과 2,130건 처리시간 0.032초

Bi-LSTM 모델을 이용한 음악 생성 시계열 예측 (Prediction of Music Generation on Time Series Using Bi-LSTM Model)

  • 김광진;이칠우
    • 스마트미디어저널
    • /
    • 제11권10호
    • /
    • pp.65-75
    • /
    • 2022
  • 딥러닝은 기존의 분석 모델이 갖는 한계를 극복하고 텍스트, 이미지, 음악 등 다양한 형태의 결과물을 생성할 수 있는 창의적인 도구로 활용되고 있다. 본 고에서는 Niko's MIDI Pack 음원 파일 1,609개를 데이터 셋으로 삼아 전처리 과정을 수행하고, 양방향 장단기 기억 순환 신경망(Bi-LSTM) 모델을 이용하여, 효율적으로 음악을 생성할 수 있는 전처리 방법과 예측 모델을 제시한다. 생성되는 으뜸음을 바탕으로 음악적 조성(調聲)에 적합한 새로운 시계열 데이터를 생성할 수 있도록 은닉층을 다층화하고, 디코더의 출력 게이트에서 인코더의 입력 데이터 중 영향을 주는 요소의 가중치를 적용하는 어텐션(Attention) 메커니즘을 적용한다. LSTM 모델의 인식률 향상을 위한 파라미터로서 손실함수, 최적화 방법 등 설정 변수들을 적용한다. 제안 모델은 MIDI 학습의 효율성 제고 및 예측 향상을 위해 높은음자리표(treble clef)와 낮은음자리표(bass clef)를 구분하여 추출된 음표, 음표의 길이, 쉼표, 쉼표의 길이와 코드(chord) 등을 적용한 다채널 어텐션 적용 양방향 기억 모델(Bi-LSTM with attention)이다. 학습의 결과는 노이즈와 구별되는 음악의 전개에 어울리는 음표와 코드를 생성하며, 화성학적으로 안정된 음악을 생성하는 모델을 지향한다.

소셜미디어 사진 게시물의 딥러닝을 활용한 도시공원 이용자 활동 이미지 분류모델 개발 (Development of Image Classification Model for Urban Park User Activity Using Deep Learning of Social Media Photo Posts)

  • 이주경;손용훈
    • 한국조경학회지
    • /
    • 제50권6호
    • /
    • pp.42-57
    • /
    • 2022
  • 본 연구의 목적은 인공지능의 딥러닝을 활용하여 소셜미디어에서 공유되는 도시공원 이용자 활동사진을 분류하는 기초 모델을 만드는 것이다. 소셜미디어 데이터는 네이버 검색을 통해 수집된 도시공원 관련 사진들을 수집하여 분류모델에 활용하였다. 도시공원 특성 평가에 활용할 수 있는 지표인 자연성(naturalness), 잠재적 매력성(potential attraction), 활동(activity)을 기반으로 최종 21개의 분류 항목체계를 만들고, 항목별로 네이버에서 공유되는 실제 도시공원 사진을 수집하여 주석이 달린 데이터 세트를 구축했다. 수집한 사진 데이터 세트에 대해 커스텀(cuntom) CNN 모델과 사전 훈련된 CNN의 전이학습 모델을 설계하고 분석하였다. 연구결과, 가장 우수한 성능을 보였던 Xception 전이학습 모델이 최종적으로 도시공원 이용자 활동 이미지 분류모델로 선정되었으며, 그 외 다양한 평가 지표를 통해 모델을 평가했다. 본 연구는 소셜미디어에 공유되는 이용자 사진을 활용하여 도시공원 특성을 평가할 수 있는 지표로서 AI를 구축한 것에 의의가 있다. 딥러닝을 활용한 분류모델은 수동분류에 대한 한계를 보완하고, 대량의 도시공원 사진을 효율적으로 분류할 수 있어서 향후 도시공원의 모니터링 및 관리에 활용할 수 있는 유용한 방법이라고 할 수 있다.

실시간 측정데이터 기반의 디스크커터 마모상태 판별 딥러닝 알고리즘 개발 (Development of deep learning algorithm for classification of disc cutter wear condition based on real-time measurement data)

  • 이지윤;여병철;정호영;김정주
    • 한국터널지하공간학회 논문집
    • /
    • 제26권3호
    • /
    • pp.281-301
    • /
    • 2024
  • 송전선로 지중화 사업의 일환인 전력구 터널은 쉴드TBM 공법에 의해 건설된다. 쉴드TBM 구성요소 중 디스크커터는 암반을 파쇄하는 중요한 역할을 수행한다. 마모한계에 도달하거나 편마모와 같은 파손이 발생함에 따라 적절한 교체가 이루어져야 효율적인 터널 공사가 가능하다. 본 연구에서는 실시간으로 측정된 디스크커터의 마모량과 회전수를 기반으로 디스크커터의 마모상태를 판별하기 위한 딥러닝 알고리즘 개발을 수행하였다. 실대형 굴진시험 결과를 통해 디스크 커터의 마모상태에 따라 측정데이터가 상이하게 획득되는 것을 확인하였다. 합성곱신경망 모델을 기반으로 실시간 측정데이터를 활용하여 디스크커터의 마모특성을 판별할 수 있는 알고리즘을 개발하였다. 합성곱신경망의 필터를 통해 데이터의 분포 특성을 학습할 수 있고, 이러한 패턴 특징을 통해 균등마모와 편마모를 분류할 수 있는 모델의 성능을 확인하였다.

RGB와 IR 영상의 압축률에 따른 객체 탐지 신경망 성능 분석 (Performance Analysis of Object Detection Neural Network According to Compression Ratio of RGB and IR Images)

  • 이예지;김신;임한신;이희경;추현곤;서정일;윤경로
    • 방송공학회논문지
    • /
    • 제26권2호
    • /
    • pp.155-166
    • /
    • 2021
  • 현재 대부분의 객체 탐지 알고리즘은 RGB 영상을 기반으로 연구되고 있다. 하지만 RGB 카메라는 물체에서 반사되는 빛을 받아들여 영상을 생성하기 때문에, 물체에서 나오는 빛이 적거나 산란이 되는 야간 또는 안개가 끼는 환경에서는 물체의 정보가 잘 표현되는 영상 취득이 어려워 객체 탐지의 정확도가 떨어진다. 그에 반해 IR(열 적외선, Infra-Red) 영상은 열 센서로 이미지를 생성하기 때문에 RGB 영상에 비해 정확한 물체의 정보를 표현할 수 있다. 따라서 본 논문에서는 이러한 이미지 특성 차이에 따른 객체 탐지 성능을 비교하고자 하며, RGB와 IR 영상의 압축률에 따른 객체 탐지를 수행하고, 결과를 비교 분석 하고자 한다. 실험에 사용된 영상은 첨단운전자 보조 시스템(ADAS) 연구용 데이터 세트인 Free FLIR Thermal 데이터 세트 중 야간에 촬영된 RGB 영상과 IR 영상을 사용하였으며, 기존 RGB 영상 기반으로 사전 학습된 신경망과 FLIR Thermal 데이터 세트 내 RGB 영상과 IR 영상을 일부 골라 재학습한 신경망을 이용하여 객체 탐지를 수행하였다. 실험 결과 RGB 기반으로 사전 학습된 신경망과 재학습한 신경망 모두 IR 영상 기반 객체 탐지 성능이 RGB 영상 기반 성능보다 월등한 것을 확인할 수 있었다.

적대적 학습 기반 오토인코더(ATAE)를 이용한 다차원 상수도관망 데이터 생성 (Multidimensional data generation of water distribution systems using adversarially trained autoencoder)

  • 김세형;전상훈;정동휘
    • 한국수자원학회논문집
    • /
    • 제56권7호
    • /
    • pp.439-449
    • /
    • 2023
  • 최근 계측 기술의 발전으로 압력계와 유량계 등 다양한 센서를 설치하여 상수도관망의 상태를 효과적으로 파악할 수 있게 되었으나, 도시가 광범위하게 개발됨에 따라 계측 신뢰도에 영향을 미치는 변수는 다양해지고 있다. 특히 상수도관망 분석에 중요한 영향력을 가지는 수요 데이터의 경우 직접 계측의 난이도가 높고 결측이 발생하기 쉬운 것으로 알려져 데이터 생성의 중요도가 증가하고 있다. 본 논문에서는 상수도관망에서 누락된 데이터를 정확하게 생성하기 위해 생성적 딥러닝 모델에 기반한 적대적 학습 기반 오토인코더(ATAE) 모델을 제안한다. 제안된 모델은 판별 신경망과 생성 신경망의 두 가지 신경망의 적대적 학습을 사용하여 압력 데이터로부터 수요 데이터를 생성한다. 학습이 완료된 ATAE 모델의 생성 신경망은 관망의 계측되는 압력 데이터가 존재하는 경우, 그로부터 추정된 관망 수요 데이터를 제공할 수 있다. ATAE 모델은 미국 텍사스주 오스틴의 실제 상수도망에 적용되어 성능이 검증되었다. 수요 및 압력 시계열 데이터의 불확실성 정도에 따른 ATAE 예측 결과의 정확도를 비교하여 데이터 불확실성의 영향을 분석하였으며, 또한 수요 수준에 따른 데이터 수집 기간별 생성 결과를 비교하여 이에 따른 데이터 생성 성능을 검토하였다.

합성곱 신경망(Convolutional Neural Network)을 활용한 지능형 아토피피부염 중증도 진단 모델 개발 (Development of Intelligent Severity of Atopic Dermatitis Diagnosis Model using Convolutional Neural Network)

  • 윤재웅;전재헌;방철환;박영민;김영주;오성민;정준호;이석준;이지현
    • 경영과정보연구
    • /
    • 제36권4호
    • /
    • pp.33-51
    • /
    • 2017
  • 제4차 산업혁명의 등장과 경제성장으로 인한 '국민 삶의 질 향상' 요구 증대로 인해 의료서비스의 질과 의료비용에 대한 국민들의 요구수준이 향상되고 있으며, 이로 인해 인공지능이 의료현장에 도입되고 있다. 하지만 인공지능이 의료분야에 활용된 사례를 살펴보면 '삶의 질'에 직접적인 영향을 끼치는 만성피부질환에 활용된 사례는 부족한 실정이며, 만성피부질환 중 대표적 질병인 아토피피부염은 정성적 진단 방법으로 인해 진단의 객관성을 확보할 수 없다는 한계가 존재한다. 본 연구에서는 아토피피부염의 객관적 중증도 평가 방법을 마련하여 아토피피부염 환자의 삶의 질을 향상시키고자 다음과 같은 연구를 수행하였다. 첫째, 가톨릭대학교 의과대학 성모병원의 데이터베이스로부터 아토피피부염 환자의 이미지 데이터를 수집했으며, 수집된 이미지 데이터에 대한 정제 및 라벨링 작업을 수행하여 모델 학습과 검증에 적합한 데이터를 확보했다. 둘째, 지능형 아토피피부염 중증도 진단 모형에 적합한 이미지 인식 알고리즘을 파악하기 위해 다양한 CNN 알고리즘들을 병변별 학습용 데이터로 학습시키고, 검증용 데이터를 활용하여 해당 모델의 이미지 인식 정확도를 측정했다. 실증분석 결과 홍반(Erythema)의 경우 'ResNet V1 101', 긁은 정도(Excoriation)의 경우 'ResNet V2 50'이 90% 이상의 정확도를 기록하였으며, 태선화(Lichenification)의 경우 학습용 데이터 부족의 한계로 인해 두 병변보다 낮은 89%의 정확도를 보였다. 해당 결과를 통해 이미지 인식 알고리즘이 단순한 사물 인식 분야뿐만 아니라 전문적 지식이 요구되는 분야에도 높은 성능을 나타낸다는 것을 실증적으로 입증했으며, 본 연구는 실제 아토피피부염 환자의 이미지 데이터를 활용했다는 측면에서 실제 임상환경에서 활용성이 높을 것으로 사료된다.

  • PDF

한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성 (Korean Sentence Generation Using Phoneme-Level LSTM Language Model)

  • 안성만;정여진;이재준;양지헌
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.71-88
    • /
    • 2017
  • 언어모델은 순차적으로 입력된 자료를 바탕으로 다음에 나올 단어나 문자를 예측하는 모델로 언어처리나 음성인식 분야에 활용된다. 최근 딥러닝 알고리즘이 발전되면서 입력 개체 간의 의존성을 효과적으로 반영할 수 있는 순환신경망 모델과 이를 발전시킨 Long short-term memory(LSTM) 모델이 언어모델에 사용되고 있다. 이러한 모형에 자료를 입력하기 위해서는 문장을 단어 혹은 형태소로 분해하는 과정을 거친 후 단어 레벨 혹은 형태소 레벨의 모형을 사용하는 것이 일반적이다. 하지만 이러한 모형은 텍스트가 포함하는 단어나 형태소의 수가 일반적으로 매우 많기 때문에 사전 크기가 커지게 되고 이에 따라 모형의 복잡도가 증가하는 문제가 있고 사전에 포함된 어휘 외에는 생성이 불가능하다는 등의 단점이 있다. 특히 한국어와 같이 형태소 활용이 다양한 언어의 경우 형태소 분석기를 통한 분해과정에서 오류가 더해질 수 있다. 이를 보완하기 위해 본 논문에서는 문장을 자음과 모음으로 이루어진 음소 단위로 분해한 뒤 입력 데이터로 사용하는 음소 레벨의 LSTM 언어모델을 제안한다. 본 논문에서는 LSTM layer를 3개 또는 4개 포함하는 모형을 사용한다. 모형의 최적화를 위해 Stochastic Gradient 알고리즘과 이를 개선시킨 다양한 알고리즘을 사용하고 그 성능을 비교한다. 구약성경 텍스트를 사용하여 실험을 진행하였고 모든 실험은 Theano를 기반으로 하는 Keras 패키지를 사용하여 수행되었다. 모형의 정량적 비교를 위해 validation loss와 test set에 대한 perplexity를 계산하였다. 그 결과 Stochastic Gradient 알고리즘이 상대적으로 큰 validation loss와 perplexity를 나타냈고 나머지 최적화 알고리즘들은 유사한 값들을 보이며 비슷한 수준의 모형 복잡도를 나타냈다. Layer 4개인 모형이 3개인 모형에 비해 학습시간이 평균적으로 69% 정도 길게 소요되었으나 정량지표는 크게 개선되지 않거나 특정 조건에서는 오히려 악화되는 것으로 나타났다. 하지만 layer 4개를 사용한 모형이 3개를 사용한 모형에 비해 완성도가 높은 문장을 생성했다. 본 논문에서 고려한 어떤 시뮬레이션 조건에서도 한글에서 사용되지 않는 문자조합이 생성되지 않았고 명사와 조사의 조합이나 동사의 활용, 주어 동사의 결합 면에서 상당히 완성도 높은 문장이 발생되었다. 본 연구결과는 현재 대두되고 있는 인공지능 시스템의 기초가 되는 언어처리나 음성인식 분야에서 한국어 처리를 위해 다양하게 활용될 수 있을 것으로 기대된다.

효과적인 문서 수준의 정보를 이용한 합성곱 신경망 기반의 신규성 탐지 (CNN-Based Novelty Detection with Effectively Incorporating Document-Level Information)

  • 조성웅;오흥선;임상훈;김선호
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권10호
    • /
    • pp.231-238
    • /
    • 2020
  • 웹 상에 수 많은 문서가 등장함에 따라 기존 문서와 내용이 중복되는 문서를 찾아서 제외함으로써 새로운 문서를 찾는 노력을 줄일 수 있어 문서 수준의 신규성 탐지(novelty detection)가 중요해졌다. 최근 연구에서는 합성곱 신경망(CNN) 구조 기반의 신규성 탐지 모델 구조가 제안되었고 상당한 성능 향상을 나타내였다. 본 논문에서는 기존의 CNN 기반의 모델에서 문서 수준의 정보가 제한적으로 사용되는 것을 관측하고 문서의 신규성을 결정할 때 문서 수준의 정보가 중요하므로 제한적인 사용이 문제가 된다고 가정하였다. 이에 대한 해결책으로, 본 논문에서는 합성곱 신경망 기반 신규성 탐지 모델 구조를 개선하여 문서 수준 정보를 효과적으로 사용하는 두 가지 방법을 제안한다. 본 논문에서 제안하는 방법은 대상(target) 문서와 증거로 주어진 출처(source) 문서 사이의 상대적(relative) 정보를 추출하여 신규성을 분류할 대상 문서의 특징 벡터를 구성하는 것에 초점을 맞춘다. 본 논문에서는 표준 벤치마크 데이터 셋인 TAP-DLND 1.0를 이용하여 여러 실험을 통해서 제안한 방법의 우수성을 보여준다.

2D Human Pose Estimation based on Object Detection using RGB-D information

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.800-816
    • /
    • 2018
  • In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.

Age Estimation via Selecting Discriminated Features and Preserving Geometry

  • Tian, Qing;Sun, Heyang;Ma, Chuang;Cao, Meng;Chu, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1721-1737
    • /
    • 2020
  • Human apparent age estimation has become a popular research topic and attracted great attention in recent years due to its wide applications, such as personal security and law enforcement. To achieve the goal of age estimation, a large number of methods have been pro-posed, where the models derived through the cumulative attribute coding achieve promised performance by preserving the neighbor-similarity of ages. However, these methods afore-mentioned ignore the geometric structure of extracted facial features. Indeed, the geometric structure of data greatly affects the accuracy of prediction. To this end, we propose an age estimation algorithm through joint feature selection and manifold learning paradigms, so-called Feature-selected and Geometry-preserved Least Square Regression (FGLSR). Based on this, our proposed method, compared with the others, not only preserves the geometry structures within facial representations, but also selects the discriminative features. Moreover, a deep learning extension based FGLSR is proposed later, namely Feature selected and Geometry preserved Neural Network (FGNN). Finally, related experiments are conducted on Morph2 and FG-Net datasets for FGLSR and on Morph2 datasets for FGNN. Experimental results testify our method achieve the best performances.