• 제목/요약/키워드: deep network

검색결과 2,982건 처리시간 0.03초

An image-based deep learning network technique for structural health monitoring

  • Lee, Dong-Han;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • 제28권6호
    • /
    • pp.799-810
    • /
    • 2021
  • When monitoring the structural integrity of a bridge using data collected through accelerometers, identifying the profile of the load exerted on the bridge from the vehicles passing over it becomes a crucial task. In this study, the speed and location of vehicles on the deck of a bridge is reconfigured using real-time video to implicitly associate the load applied to the bridge with the response from the bridge sensors to develop an image-based deep learning network model. Instead of directly measuring the load that a moving vehicle exerts on the bridge, the intention in the proposed method is to replace the correlation between the movement of vehicles from CCTV images and the corresponding response by the bridge with a neural network model. Given the framework of an input-output-based system identification, CCTV images secured from the bridge and the acceleration measurements from a cantilevered beam are combined during the process of training the neural network model. Since in reality, structural damage cannot be induced in a bridge, the focus of the study is on identifying local changes in parameters by adding mass to a cantilevered beam in the laboratory. The study successfully identified the change in the material parameters in the beam by using the deep-learning neural network model. Also, the method correctly predicted the acceleration response of the beam. The proposed approach can be extended to the structural health monitoring of actual bridges, and its sensitivity to damage can also be improved through optimization of the network training.

Deep Neural Network-Based Critical Packet Inspection for Improving Traffic Steering in Software-Defined IoT

  • 담프로힘;맛사;김석훈
    • 인터넷정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid growth of intelligent devices and communication technologies, 5G network environment has become more heterogeneous and complex in terms of service management and orchestration. 5G architecture requires supportive technologies to handle the existing challenges for improving the Quality of Service (QoS) and the Quality of Experience (QoE) performances. Among many challenges, traffic steering is one of the key elements which requires critically developing an optimal solution for smart guidance, control, and reliable system. Mobile edge computing (MEC), software-defined networking (SDN), network functions virtualization (NFV), and deep learning (DL) play essential roles to complementary develop a flexible computation and extensible flow rules management in this potential aspect. In this proposed system, an accurate flow recommendation, a centralized control, and a reliable distributed connectivity based on the inspection of packet condition are provided. With the system deployment, the packet is classified separately and recommended to request from the optimal destination with matched preferences and conditions. To evaluate the proposed scheme outperformance, a network simulator software was used to conduct and capture the end-to-end QoS performance metrics. SDN flow rules installation was experimented to illustrate the post control function corresponding to DL-based output. The intelligent steering for network communication traffic is cooperatively configured in SDN controller and NFV-orchestrator to lead a variety of beneficial factors for improving massive real-time Internet of Things (IoT) performance.

Design of a Recommendation System for Improving Deep Neural Network Performance

  • Juhyoung Sung;Kiwon Kwon;Byoungchul Song
    • 인터넷정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.49-56
    • /
    • 2024
  • There have been emerging many use-cases applying recommendation systems especially in online platform. Although the performance of recommendation systems is affected by a variety of factors, selecting appropriate features is difficult since most of recommendation systems have sparse data. Conventional matrix factorization (MF) method is a basic way to handle with problems in the recommendation systems. However, the MF based scheme cannot reflect non-linearity characteristics well. As deep learning technology has been attracted widely, a deep neural network (DNN) framework based collaborative filtering (CF) was introduced to complement the non-linearity issue. However, there is still a problem related to feature embedding for use as input to the DNN. In this paper, we propose an effective method using singular value decomposition (SVD) based feature embedding for improving the DNN performance of recommendation algorithms. We evaluate the performance of recommendation systems using MovieLens dataset and show the proposed scheme outperforms the existing methods. Moreover, we analyze the performance according to the number of latent features in the proposed algorithm. We expect that the proposed scheme can be applied to the generalized recommendation systems.

QoE 향상을 위한 Deep Q-Network 기반의 지능형 비디오 스트리밍 메커니즘 (An Intelligent Video Streaming Mechanism based on a Deep Q-Network for QoE Enhancement)

  • 김이슬;홍성준;정성욱;임경식
    • 한국멀티미디어학회논문지
    • /
    • 제21권2호
    • /
    • pp.188-198
    • /
    • 2018
  • With recent development of high-speed wide-area wireless networks and wide spread of highperformance wireless devices, the demand on seamless video streaming services in Long Term Evolution (LTE) network environments is ever increasing. To meet the demand and provide enhanced Quality of Experience (QoE) with mobile users, the Dynamic Adaptive Streaming over HTTP (DASH) has been actively studied to achieve QoE enhanced video streaming service in dynamic network environments. However, the existing DASH algorithm to select the quality of requesting video segments is based on a procedural algorithm so that it reveals a limitation to adapt its performance to dynamic network situations. To overcome this limitation this paper proposes a novel quality selection mechanism based on a Deep Q-Network (DQN) model, the DQN-based DASH ABR($DQN_{ABR}$) mechanism. The $DQN_{ABR}$ mechanism replaces the existing DASH ABR algorithm with an intelligent deep learning model which optimizes service quality to mobile users through reinforcement learning. Compared to the existing approaches, the experimental analysis shows that the proposed solution outperforms in terms of adapting to dynamic wireless network situations and improving QoE experience of end users.

음성 신호와 심층 잔류 순환 신경망을 이용한 파킨슨병 진단 (Parkinson's disease diagnosis using speech signal and deep residual gated recurrent neural network)

  • 신승수;김지연;구본미;김형국
    • 한국음향학회지
    • /
    • 제38권3호
    • /
    • pp.308-313
    • /
    • 2019
  • 노년기 3대 질환 중 하나인 파킨슨병은 환자의 70 % 이상이 음성 장애를 앓고 있으며 최근 음성 신호를 통한 파킨슨병의 진단 방법들이 고안되고 있다. 본 논문에서는 음성 특징을 이용한 심층 잔류 순환 신경망 기반의 파킨슨병 진단 방식을 제안한다. 제안하는 방식에서는 파킨슨병 진단을 위한 음성 특징을 선택하고 이를 심층 잔류 순환 신경망에 적용하여 파킨슨병 환자를 식별한다. 제안하는 심층 잔류 순환 신경망은 심층 순환 신경망에 잔류 학습 방식을 결합한 알고리즘으로 파킨슨병 진단에서 기존의 식별 알고리즘보다 더 높은 인식률을 보인다.

심층 신경망 기반 딥 드로잉 공정 블랭크 두께 변화율 예측 (Prediction of Blank Thickness Variation in a Deep Drawing Process Using Deep Neural Network)

  • 박근태;박지우;곽민준;강범수
    • 소성∙가공
    • /
    • 제29권2호
    • /
    • pp.89-96
    • /
    • 2020
  • The finite element method has been widely applied in the sheet metal forming process. However, the finite element method is computationally expensive and time consuming. In order to tackle this problem, surrogate modeling methods have been proposed. An artificial neural network (ANN) is one such surrogate model and has been well studied over the past decades. However, when it comes to ANN with two or more layers, so called deep neural networks (DNN), there is distinct a lack of research. We chose to use DNNs our surrogate model to predict the behavior of sheet metal in the deep drawing process. Thickness variation is selected as an output of the DNN in order to evaluate workpiece feasibility. Input variables of the DNN are radius of die, die corner and blank holder force. Finite element analysis was conducted to obtain data for surrogate model construction and testing. Sampling points were determined by full factorial, latin hyper cube and monte carlo methods. We investigated the performance of the DNN according to its structure, number of nodes and number of layers, then it was compared with a radial basis function surrogate model using various sampling methods and numbers. The results show that our DNN could be used as an efficient surrogate model for the deep drawing process.

Image-based ship detection using deep learning

  • Lee, Sung-Jun;Roh, Myung-Il;Oh, Min-Jae
    • Ocean Systems Engineering
    • /
    • 제10권4호
    • /
    • pp.415-434
    • /
    • 2020
  • Detecting objects is important for the safe operation of ships, and enables collision avoidance, risk detection, and autonomous sailing. This study proposes a ship detection method from images and videos taken at sea using one of the state-of-the-art deep neural network-based object detection algorithms. A deep learning model is trained using a public maritime dataset, and results show it can detect all types of floating objects and classify them into ten specific classes that include a ship, speedboat, and buoy. The proposed deep learning model is compared to a universal trained model that detects and classifies objects into general classes, such as a person, dog, car, and boat, and results show that the proposed model outperforms the other in the detection of maritime objects. Different deep neural network structures are then compared to obtain the best detection performance. The proposed model also shows a real-time detection speed of approximately 30 frames per second. Hence, it is expected that the proposed model can be used to detect maritime objects and reduce risks while at sea.

Privacy-Preserving Deep Learning using Collaborative Learning of Neural Network Model

  • Hye-Kyeong Ko
    • International journal of advanced smart convergence
    • /
    • 제12권2호
    • /
    • pp.56-66
    • /
    • 2023
  • The goal of deep learning is to extract complex features from multidimensional data use the features to create models that connect input and output. Deep learning is a process of learning nonlinear features and functions from complex data, and the user data that is employed to train deep learning models has become the focus of privacy concerns. Companies that collect user's sensitive personal information, such as users' images and voices, own this data for indefinite period of times. Users cannot delete their personal information, and they cannot limit the purposes for which the data is used. The study has designed a deep learning method that employs privacy protection technology that uses distributed collaborative learning so that multiple participants can use neural network models collaboratively without sharing the input datasets. To prevent direct leaks of personal information, participants are not shown the training datasets during the model training process, unlike traditional deep learning so that the personal information in the data can be protected. The study used a method that can selectively share subsets via an optimization algorithm that is based on modified distributed stochastic gradient descent, and the result showed that it was possible to learn with improved learning accuracy while protecting personal information.

머신러닝과 딥러닝 기법을 이용한 부산 전략산업과 수출에 의한 고용과 소득 예측 (Machine Learning and Deep Learning Models to Predict Income and Employment with Busan's Strategic Industry and Export)

  • 이재득
    • 무역학회지
    • /
    • 제46권1호
    • /
    • pp.169-187
    • /
    • 2021
  • This paper analyzes the feasibility of using machine learning and deep learning methods to forecast the income and employment using the strategic industries as well as investment, export, and exchange rates. The decision tree, artificial neural network, support vector machine, and deep learning models were used to forecast the income and employment in Busan. The following were the main findings of the comparison of their predictive abilities. First, the decision tree models predict the income and employment well. The forecasting values for the income and employment appeared somewhat differently according to the depth of decision trees and several conditions of strategic industries as well as investment, export, and exchange rates. Second, since the artificial neural network models show that the coefficients are somewhat low and RMSE are somewhat high, these models are not good forecasting the income and employment. Third, the support vector machine models show the high predictive power with the high coefficients of determination and low RMSE. Fourth, the deep neural network models show the higher predictive power with appropriate epochs and batch sizes. Thus, since the machine learning and deep learning models can predict the employment well, we need to adopt the machine learning and deep learning models to forecast the income and employment.

Multi-type Image Noise Classification by Using Deep Learning

  • Waqar Ahmed;Zahid Hussain Khand;Sajid Khan;Ghulam Mujtaba;Muhammad Asif Khan;Ahmad Waqas
    • International Journal of Computer Science & Network Security
    • /
    • 제24권7호
    • /
    • pp.143-147
    • /
    • 2024
  • Image noise classification is a classical problem in the field of image processing, machine learning, deep learning and computer vision. In this paper, image noise classification is performed using deep learning. Keras deep learning library of TensorFlow is used for this purpose. 6900 images images are selected from the Kaggle database for the classification purpose. Dataset for labeled noisy images of multiple type was generated with the help of Matlab from a dataset of non-noisy images. Labeled dataset comprised of Salt & Pepper, Gaussian and Sinusoidal noise. Different training and tests sets were partitioned to train and test the model for image classification. In deep neural networks CNN (Convolutional Neural Network) is used due to its in-depth and hidden patterns and features learning in the images to be classified. This deep learning of features and patterns in images make CNN outperform the other classical methods in many classification problems.