• 제목/요약/키워드: deep network

검색결과 2,986건 처리시간 0.036초

혁신제품 확산과정에 대한 저유량 모형 개발: 친환경 자동차를 대상으로 (Development of a Stock Flow Model on Diffusion Process of Innovative Goods: the Green Car Diffusion Case)

  • 박경배
    • 한국시스템다이내믹스연구
    • /
    • 제14권3호
    • /
    • pp.25-49
    • /
    • 2013
  • As global competition for green car, that is environmentally friendly car, is getting tougher, the governments and the related industries are putting their core efforts in its diffusion. However, the green car sales are disappointing so far. To overcome the gridlock, it is necessary to develop concrete analytical framework to understand the diffusion process. Based on causal loop analysis from the previous work, we have identified main variables and relationships of them in the diffusion process and developed a stock-flow diagram and mathematical formula for the main components. The model would be applied for further quantitative simulation on the diffusion process of green car and other innovative goods as well. Also, we have suggested constructive insights for the policy makers and for the related industries. First, it is important to increase consumers' willingness to consider through marketing and word of mouth to accelerate the diffusion process. Second, in the perspective of the industry, the market share of green car should be increased at the earliest possible stage and this could be done by enhancing each components of green car attractiveness(e.g. price, driving range, social infra). Third, companies should develop a balanced investment between consumer and technology sector through a flexible financial policy. Fourth, the government continuously has the role of investing in the related R&D and social infra building. We expect the green car diffusion model and related formula from the research can provide meaningful tools to analyze the diffusion process of other new and innovative goods based on its deep researched literature review.

  • PDF

Impurity profiling and chemometric analysis of methamphetamine seizures in Korea

  • Shin, Dong Won;Ko, Beom Jun;Cheong, Jae Chul;Lee, Wonho;Kim, Suhkmann;Kim, Jin Young
    • 분석과학
    • /
    • 제33권2호
    • /
    • pp.98-107
    • /
    • 2020
  • Methamphetamine (MA) is currently the most abused illicit drug in Korea. MA is produced by chemical synthesis, and the final target drug that is produced contains small amounts of the precursor chemicals, intermediates, and by-products. To identify and quantify these trace compounds in MA seizures, a practical and feasible approach for conducting chromatographic fingerprinting with a suite of traditional chemometric methods and recently introduced machine learning approaches was examined. This was achieved using gas chromatography (GC) coupled with a flame ionization detector (FID) and mass spectrometry (MS). Following appropriate examination of all the peaks in 71 samples, 166 impurities were selected as the characteristic components. Unsupervised (principal component analysis (PCA), hierarchical cluster analysis (HCA), and K-means clustering) and supervised (partial least squares-discriminant analysis (PLS-DA), orthogonal partial least squares-discriminant analysis (OPLS-DA), support vector machines (SVM), and deep neural network (DNN) with Keras) chemometric techniques were employed for classifying the 71 MA seizures. The results of the PCA, HCA, K-means clustering, PLS-DA, OPLS-DA, SVM, and DNN methods for quality evaluation were in good agreement. However, the tested MA seizures possessed distinct features, such as chirality, cutting agents, and boiling points. The study indicated that the established qualitative and semi-quantitative methods will be practical and useful analytical tools for characterizing trace compounds in illicit MA seizures. Moreover, they will provide a statistical basis for identifying the synthesis route, sources of supply, trafficking routes, and connections between seizures, which will support drug law enforcement agencies in their effort to eliminate organized MA crime.

MSaGAN: Improved SaGAN using Guide Mask and Multitask Learning Approach for Facial Attribute Editing

  • Yang, Hyeon Seok;Han, Jeong Hoon;Moon, Young Shik
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권5호
    • /
    • pp.37-46
    • /
    • 2020
  • 최근 얼굴 속성 편집(facial attribute editing)의 연구는 GAN(Generative Adversarial Net)과 인코더-디코더(encoder-decoder) 구조를 활용하여 사실적인 결과를 얻고 있다. 최신 연구 중 하나인 SaGAN(Spatial attention GAN)은 공간적 주의 기제(spatial attention mechanism)를 활용하여 얼굴 영상에서 원하는 속성만을 변경할 방법을 제안하였다. 그러나 불충분한 얼굴 영역 정보로 인하여 때로 부자연스러운 결과를 얻는 경우가 발생한다. 본 논문에서는 기존 연구의 한계점을 개선하기 위하여 유도 마스크(guide mask)를 학습에 활용하고, 다중작업 학습(multitask learning) 접근을 적용한 개선된 SaGAN(MSaGAN)을 제안한다. 폭넓은 실험을 통해 마스크 손실 함수와 신경망 구조에 따른 얼굴 속성 편집의 결과를 비교하여 제안하는 방법이 기존보다 더 자연스러운 결과를 효율적으로 얻을 수 있음을 보인다.

Improved STGAN for Facial Attribute Editing by Utilizing Mask Information

  • Yang, Hyeon Seok;Han, Jeong Hoon;Moon, Young Shik
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권5호
    • /
    • pp.1-9
    • /
    • 2020
  • 본 논문에서는 머리카락과 모자 영역의 마스크 정보를 활용하여 더 자연스러운 얼굴 속성 편집(facial attribute editing)을 수행하는 모델을 제안한다. 최신 얼굴 속성 편집 연구인 STGAN은 다중 얼굴 속성을 자연스럽게 편집하는 성과를 보였다. 그러나 머리카락과 관련된 속성을 편집할 때 부자연스러운 결과를 생성할 수 있다. 제안하는 방법의 핵심 아이디어는 기존 모델에서 부족했던 얼굴 영역의 정보를 모델에 추가로 반영하는 것이다. 이를 위해 세 가지 아이디어를 적용한다. 첫째로 마스크를 통해 머리카락 면적 속성을 추가하여 머리카락 정보를 보완한다. 둘째로 순환 일관성 손실(cycle consistency loss)을 추가하여 영상의 불필요한 변화를 억제한다. 셋째로 모자 분할 신경망을 추가하여 모자 영역 왜곡을 방지한다. 정성적 평가를 통해 제안하는 방법 적용 여부에 따른 유효성을 평가 및 분석한다. 실험 결과에서 제안하는 방법이 머리카락 및 얼굴 영역을 더 자연스럽게 생성하고, 모자 영역의 왜곡을 성공적으로 방지했다.

기계학습 활용을 위한 학습 데이터세트 구축 표준화 방안에 관한 연구 (A study on the standardization strategy for building of learning data set for machine learning applications)

  • 최정열
    • 디지털융복합연구
    • /
    • 제16권10호
    • /
    • pp.205-212
    • /
    • 2018
  • 고성능 CPU/GPU의 개발과 심층신경망 등의 인공지능 알고리즘, 그리고 다량의 데이터 확보를 통해 기계학습이 다양한 응용 분야로 확대 적용되고 있다. 특히, 사물인터넷, 사회관계망서비스, 웹페이지, 공공데이터로부터 수집된 다량의 데이터들이 기계학습의 활용에 가속화를 가하고 있다. 기계학습을 위한 학습 데이터세트는 응용 분야와 데이터 종류에 따라 다양한 형식으로 존재하고 있어 효과적으로 데이터를 처리하고 기계학습에 적용하기에 어려움이 따른다. 이에 본 논문은 표준화된 절차에 따라 기계학습을 위한 학습 데이터세트를 구축하기 위한 방안을 연구하였다. 먼저 학습 데이터세트가 갖추어야할 요구사항을 문제 유형과 데이터 유형별로 분석하였다. 이를 토대로 기계학습 활용을 위한 학습 데이터세트 구축에 관한 참조모델을 제안하였다. 또한 학습 데이터세트 구축 참조모델을 국제 표준으로 개발하기 위해 대상 표준화 기구의 선정 및 표준화 전략을 제시하였다.

병 인식 및 보증금 환불을 위한 분류 알고리즘 (A Bottle Recognition and Classification Algorithm for Deposit Refund)

  • 정필성;조양현
    • 한국정보통신학회논문지
    • /
    • 제21권9호
    • /
    • pp.1744-1751
    • /
    • 2017
  • 세계 각국에서 환경규제를 강화하고 생활 폐기물을 줄이기 위해서 노력하고 있다. 우리나라 역시 자원의 절약과 재활용촉진을 위한 법률을 제정하여 에너지자원순환을 위해 노력하고 있다. 정부에서는 빈병 재활용을 위하여 빈용기 보증금 제도를 시행하고 있지만 인력을 통한 회수는 한계가 존재하며, 빈병무인회수기 또한 국산화가 되어 있지 않은 관계로 시행 효과가 미비한 상황이다. 본 논문에서는 에너지자원순환을 촉진하기 위해서 빈병무인회수기에서 필수적으로 요구되는 병 인식 및 보증금 환불을 위한 병 분류 알고리즘을 제안하였다. 제안 알고리즘은 OpenCV와 CNN을 이용한 복합 식별 알고리즘으로서 제안 알고리즘의 효용성 평가를 위하여 빈병무인회수기에서 동작하는 분류 시스템을 구현하여 다양한 디바이스에서 빈병 정보 및 무인회수기에 대한 정보를 쉽게 획득할 수 있도록 하였다.

다중작업학습 기법을 적용한 Bi-LSTM 개체명 인식 시스템 성능 비교 분석 (Performance Comparison Analysis on Named Entity Recognition system with Bi-LSTM based Multi-task Learning)

  • 김경민;한승규;오동석;임희석
    • 디지털융복합연구
    • /
    • 제17권12호
    • /
    • pp.243-248
    • /
    • 2019
  • 다중작업학습(Multi-Task Learning, MTL) 기법은 하나의 신경망을 통해 다양한 작업을 동시에 수행하고 각 작업 간에 상호적으로 영향을 미치면서 학습하는 방식을 말한다. 본 연구에서는 전통문화 말뭉치를 직접 구축 및 학습데이터로 활용하여 다중작업학습 기법을 적용한 개체명 인식 모델에 대해 성능 비교 분석을 진행한다. 학습 과정에서 각각의 품사 태깅(Part-of-Speech tagging, POS-tagging) 과 개체명 인식(Named Entity Recognition, NER) 학습 파라미터에 대해 Bi-LSTM 계층을 통과시킨 후 각각의 Bi-LSTM을 계층을 통해 최종적으로 두 loss의 joint loss를 구한다. 결과적으로, Bi-LSTM 모델을 활용하여 단일 Bi-LSTM 모델보다 MTL 기법을 적용한 모델에서 1.1%~4.6%의 성능 향상이 있음을 보인다.

Denoising ISTA-Net: 측면주사 소나 영상 잡음제거를 위한 강화된 비선형성 학습 기반 압축 센싱 (Denoising ISTA-Net: learning based compressive sensing with reinforced non-linearity for side scan sonar image denoising)

  • 이보경;구본화;김완진;김성일;고한석
    • 한국음향학회지
    • /
    • 제39권4호
    • /
    • pp.246-254
    • /
    • 2020
  • 본 논문에서는 학습 기반 압축 센싱 기법을 이용한 측면주사 소나 영상의 비균일 잡음 제거 알고리즘을 제안한다. 제안하는 기법은 Iterative Shrinkage and Thresholding Algorithm(ISTA) 알고리즘을 기반으로 하고 있으며 성능 향상을 위해 학습네트워크의 비선형성을 강화시키는 전략을 선택하였다. 제안된 구조는 입력 신호를 비선형 변환과 초기화 하는 부분, Sparse 공간으로 변환 및 역변환하는 ISTA block, 특징 공간에서 픽셀 공간으로 변환하는 부분으로 구성된다. 제안된 기법은 다양한 모의 실험을 통해 잡음 제거 성능 및 메모리 효율성 측면에서 우수함이 입증되었다.

딥러닝을 이용한 소외계층 아동의 스포츠 재활치료를 통한 정신 건강에 대한 변화 (Variation for Mental Health of Children of Marginalized Classes through Exercise Therapy using Deep Learning)

  • 김명미
    • 한국전자통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.725-732
    • /
    • 2020
  • 본 논문은 소외계층 아동의 운동학습프로그램에서 체력 활동 중 나를 잘 따른다(0-9), 마음의 결정을 내리는데 많은 시간이 걸린다(0-9), 맥빠진(0-9) 등을 변수로 사용하여 '성별', '체육교실', 나이의 '상중하'를 분류하고 스포츠 재활치료를 통한 자아 탄력(ego-resiliency)과 자아 통제(self-control)의 변화를 관찰하여 정신 건강 변화를 알아본다. 이를 위해 취득한 데이터를 병합하고 Label encoder와 One-hot encoding을 사용하여 숫자의 크고 작음의 특성을 제거한 후 MLP, SVM, Dicesion tree, RNN, LSTM의 각각의 알고리즘을 적용하여 성능을 평가하기 위해 Train, Test 데이터를 75%, 25% 스플릿 한 뒤 Train 데이터로 알고리즘을 학습하고 Test 데이터로 알고리즘의 정확성을 측정한다. 측정 결과 성별에서는 LSTM, 체육 교실은 MLP와 LSTM, 나이는 SVM이 가장 우수한 결과를 보임을 확인하였다.

사용자 인식을 위한 가상 심전도 신호 생성 기술에 관한 연구 (A Study on the Synthetic ECG Generation for User Recognition)

  • 김민구;김진수;반성범
    • 스마트미디어저널
    • /
    • 제8권4호
    • /
    • pp.33-37
    • /
    • 2019
  • 심전도 신호는 시간 및 환경 변화에 따라 측정되는 시계열 데이터로 매번 등록 데이터와 동일한 크기의 비교 데이터를 취득해야 하는 문제점이 발생한다. 본 논문에서는 신호 크기 부적합 문제를 해결하기 위해 가상 생체신호 생성을 위한 보조 분류기 기반 적대적 생성 신경망(Auxiliary Classifier Generative Adversarial Networks)의 네트워크 모델을 제안한다. 생성된 가상 생체신호의 유사성을 확인하기 위해 코사인 각도와 교차 상관관계를 이용하였다. 실험 결과, 코사인 유사도 측정 결과로 평균 유사도는 0.991의 결과를 나타냈으며, 교차 상관관계를 이용한 유클리디언 거리 기반 유사성 측정 결과는 평균 0.25 유사도 결과를 나타냈다. 이는 등록 데이터와 실험 데이터간의 크기가 일치하지 않더라도 가상 생체신호 생성을 통해 신호 크기 부적합 문제를 해결함을 확인하였다.