• Title/Summary/Keyword: deep learning program

Search Result 145, Processing Time 0.023 seconds

Effect of Korean Medicine Treatment on Children Who Visited Korean Medicine Hospital for Growth: A Case Report Using Deep Learning-Based Bone Age Program (성장을 주소로 한방병원에 내원한 환아의 한의치료 효과: Deep Learning 기반 골연령 판독 프로그램을 활용한 증례보고)

  • Ye Ji Han;Boram Lee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.37 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • Objectives We aimed to compare the bone age (BA) estimation by a deep learning-based program and by a specialist in pediatrics of Korean medicine using the Tanner-Whitehouse 3 (TW3) technique for the cases of children who visited a Korean medicine hospital for growth, and to report the effect of Korean medicine treatment. Methods For three children who visited the Korean medicine hospital for growth, BA estimation by the deep learning program and by the specialist in pediatrics of Korean medicine using the TW3 technique was compared, and the time required for estimation was investigated. The change of height, BA, and predicted adult height (PAH) using deep learning program after Korean medicine treatment was observed. Results BA estimation of the left hand bone X-ray by the specialist using the TW3 technique showed a difference of -0.03 to +0.15 years from the estimation by the deep learning program. The mean estimation time was 5 minutes and 49 seconds per one for the specialist and 48 seconds for the deep learning program. During the treatment period, the height percentile and PAH estimated by deep learning program were increased after Korean medicine treatment compared to baseline while acceleration of BA was suppressed compared to chronological age. Conclusions BA estimation using the deep learning program and the TW3 technique showed a difference of less than 0.15 years, and in three cases of patients with growth as the chief complaint, Korean medicine treatment increased height percentile and PAH without accelerating BA maturation.

AI Education Programs for Deep-Learning Concepts (딥러닝 개념을 위한 인공지능 교육 프로그램)

  • Ryu, Miyoung;Han, SeonKwan
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 2019
  • The purpose of this study is to develop an educational program for learning deep learning concepts for elementary school students. The model of education program was developed the deep-learning teaching method based on CT element-oriented teaching and learning model. The subject of the developed program is the artificial intelligence image recognition CNN algorithm, and we have developed 9 educational programs. We applied the program over two weeks to sixth graders. Expert validity analysis showed that the minimum CVR value was more than .56. The fitness level of learner level and the level of teacher guidance were less than .80, and the fitness of learning environment and media above .96 was high. The students' satisfaction analysis showed that students gave a positive evaluation of the average of 4.0 or higher on the understanding, benefit, interest, and learning materials of artificial intelligence learning.

Structural novelty detection based on sparse autoencoders and control charts

  • Finotti, Rafaelle P.;Gentile, Carmelo;Barbosa, Flavio;Cury, Alexandre
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.647-664
    • /
    • 2022
  • The powerful data mapping capability of computational deep learning methods has been recently explored in academic works to develop strategies for structural health monitoring through appropriate characterization of dynamic responses. In many cases, these studies concern laboratory prototypes and finite element models to validate the proposed methodologies. Therefore, the present work aims to investigate the capability of a deep learning algorithm called Sparse Autoencoder (SAE) specifically focused on detecting structural alterations in real-case studies. The idea is to characterize the dynamic responses via SAE models and, subsequently, to detect the onset of abnormal behavior through the Shewhart T control chart, calculated with SAE extracted features. The anomaly detection approach is exemplified using data from the Z24 bridge, a classical benchmark, and data from the continuous monitoring of the San Vittore bell-tower, Italy. In both cases, the influence of temperature is also evaluated. The proposed approach achieved good performance, detecting structural changes even under temperature variations.

Deep Neural Net Machine Learning and Manufacturing (제조업의 심층신경망 기계학습(딥러닝))

  • CHO, Mann;Lee, Mingook
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.11-29
    • /
    • 2017
  • In recent years, the use of artificial intelligence technology such as deep neural net machine learning(deep learning) is becoming an effective and practical option in industrial manufacturing process. This study focuses on recent deep learning development environments and their applications in the manufacturing field.

Comparison of Different Deep Learning Optimizers for Modeling Photovoltaic Power

  • Poudel, Prasis;Bae, Sang Hyun;Jang, Bongseog
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.204-208
    • /
    • 2018
  • Comparison of different optimizer performance in photovoltaic power modeling using artificial neural deep learning techniques is described in this paper. Six different deep learning optimizers are tested for Long-Short-Term Memory networks in this study. The optimizers are namely Adam, Stochastic Gradient Descent, Root Mean Square Propagation, Adaptive Gradient, and some variants such as Adamax and Nadam. For comparing the optimization techniques, high and low fluctuated photovoltaic power output are examined and the power output is real data obtained from the site at Mokpo university. Using Python Keras version, we have developed the prediction program for the performance evaluation of the optimizations. The prediction error results of each optimizer in both high and low power cases shows that the Adam has better performance compared to the other optimizers.

Development of Deep Learning-based Clinical Decision Supporting Technique for Laryngeal Disease using Endoscopic Images (딥러닝 기반 후두부 질환 내시경 영상판독 보조기술 개발)

  • Jung, In Ho;Hwang, Young Jun;Sung, Eui-Suk;Nam, Kyoung Won
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.102-108
    • /
    • 2022
  • Purpose: To propose a deep learning-based clinical decision support technique for laryngeal disease on epiglottis, tongue and vocal cords. Materials and Methods: A total of 873 laryngeal endoscopic images were acquired from the PACS database of Pusan N ational University Yangsan Hospital. and VGG16 model was applied with transfer learning and fine-tuning. Results: The values of precision, recall, accuracy and F1-score for test dataset were 0.94, 0.97, 0.95 and 0.95 for epiglottis images, 0.91, 1.00, 0.95 and 0.95 for tongue images, and 0.90, 0.64, 0.73 and 0.75 for vocal cord images, respectively. Conclusion: Experimental results demonstrated that the proposed model have a potential as a tool for decision-supporting of otolaryngologist during manual inspection of laryngeal endoscopic images.

Car detection area segmentation using deep learning system

  • Dong-Jin Kwon;Sang-hoon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.182-189
    • /
    • 2023
  • A recently research, object detection and segmentation have emerged as crucial technologies widely utilized in various fields such as autonomous driving systems, surveillance and image editing. This paper proposes a program that utilizes the QT framework to perform real-time object detection and precise instance segmentation by integrating YOLO(You Only Look Once) and Mask R CNN. This system provides users with a diverse image editing environment, offering features such as selecting specific modes, drawing masks, inspecting detailed image information and employing various image processing techniques, including those based on deep learning. The program advantage the efficiency of YOLO to enable fast and accurate object detection, providing information about bounding boxes. Additionally, it performs precise segmentation using the functionalities of Mask R CNN, allowing users to accurately distinguish and edit objects within images. The QT interface ensures an intuitive and user-friendly environment for program control and enhancing accessibility. Through experiments and evaluations, our proposed system has been demonstrated to be effective in various scenarios. This program provides convenience and powerful image processing and editing capabilities to both beginners and experts, smoothly integrating computer vision technology. This paper contributes to the growth of the computer vision application field and showing the potential to integrate various image processing algorithms on a user-friendly platform

Performance Evaluation of a Machine Learning Model Based on Data Feature Using Network Data Normalization Technique (네트워크 데이터 정형화 기법을 통한 데이터 특성 기반 기계학습 모델 성능평가)

  • Lee, Wooho;Noh, BongNam;Jeong, Kimoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.785-794
    • /
    • 2019
  • Recently Deep Learning technology, one of the fourth industrial revolution technologies, is used to identify the hidden meaning of network data that is difficult to detect in the security arena and to predict attacks. Property and quality analysis of data sources are required before selecting the deep learning algorithm to be used for intrusion detection. This is because it affects the detection method depending on the contamination of the data used for learning. Therefore, the characteristics of the data should be identified and the characteristics selected. In this paper, the characteristics of malware were analyzed using network data set and the effect of each feature on performance was analyzed when the deep learning model was applied. The traffic classification experiment was conducted on the comparison of characteristics according to network characteristics and 96.52% accuracy was classified based on the selected characteristics.

Research on a statistics education program utilizing deep learning predictions in high school mathematics (고등학교 수학에서 딥러닝 예측을 이용한 통계교육 프로그램 연구)

  • Hyeseong Jin;Boeuk Suh
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.209-231
    • /
    • 2024
  • The education sector is undergoing significant changes due to the Fourth Industrial Revolution and the advancement of artificial intelligence. Particularly, the importance of education based on artificial intelligence is being emphasized. Accordingly, the purpose of this study is to develop a statistics education program using deep learning prediction in high school mathematics and to examine the impact of such statistically problem-solvingcentered statistics education programs on high school students' statistical literacy and computational thinking. To achieve this goal, a statistics education program using deep learning prediction applicable to high school mathematics was developed. The analysis revealed that students' understanding of context improved through experiencing how data was generated and collected. Additionally, they enhanced their comprehension of data variability while exploring and analyzing various datasets. Moreover, they demonstrated the ability to critically analyze data during the process of validating its reliability. In order to analyze the impact of the statistics education program on high school students' computational thinking, a paired sample t-test was conducted, confirming a statistically significant difference in computational thinking between before and after classes (t=-11.657, p<0.001).

Detecting A Crypto-mining Malware By Deep Learning Analysis

  • Aljehani, Shahad;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.172-180
    • /
    • 2022
  • Crypto-mining malware (known as crypto-jacking) is a novel cyber-attack that exploits the victim's computing resources such as CPU and GPU to generate illegal cryptocurrency. The attacker get benefit from crypto-jacking by using someone else's mining hardware and their electricity power. This research focused on the possibility of detecting the potential crypto-mining malware in an environment by analyzing both static and dynamic approaches of deep learning. The Program Executable (PE) files were utilized with deep learning methods which are Long Short-Term Memory (LSTM). The finding revealed that LTSM outperformed both SVM and RF in static and dynamic approaches with percentage of 98% and 96%, respectively. Future studies will focus on detecting the malware using larger dataset to have more accurate and realistic results.