• Title/Summary/Keyword: deep drawability

Search Result 63, Processing Time 0.023 seconds

Texture and Plastic Strain Ratio Changes of Hot Asymmetrically Rolled AA3003 Sheet (열간 비대칭 압연한 AA3003 판재의 집합조직과 소성변형비 변화)

  • Hamrakulov, B.;Lee, C.W.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.281-286
    • /
    • 2019
  • The plastic strain ratio is one of the factors of the deep drawability of metal sheets. The plastic strain ratio of Al sheet is low value. Therefore, it is necessary to increase the plastic strain ratio in order to improve the deep draw ability of the Al sheet. This study investigated the increase of the plastic strain ratio and the texture change of AA3003 sheet after the hot asymmetric rolling. The average plastic strain ratio of the initial AA3003 sheets was 0.69. After 83% hot asymmetric rolling at $200^{\circ}C$, the average plastic strain ratio was 0.83. The average plastic strain ratio of the 83% hot asymmetrically rolled AA3003 sheet at $200^{\circ}C$ is 1.2 times higher than that of the initial AA3003 sheet. The ${\mid}{\Delta}R{\mid}$ of 83% hot asymmetrically rolled AA3003 sheet at $200^{\circ}C$ is 0.83 times lower than that of the initial AA3003 sheet. This result is due to the development of the intensity of ${\gamma}-fiber$ texture and reduces the intensity of {001}<110> and {001}<100> textures after hot asymmetric rolling of AA3003 sheet.

Changes of Texture and Plastic Strain Ratio of Asymmetrically Rolled and Annealed Cu Sheet (I) (비대칭 압연과 열처리한 Cu 판의 집합조직과 소성변형비 변화 (I))

  • Lee, C.W.;Lee, D.N.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.354-360
    • /
    • 2019
  • The plastic strain ratio is one of the factors that affect the deep drawability of metal sheets. The plastic strain ratio of fully annealed Cu sheet is low because its texture has {001}<100>. In order to improve the deep drawability of Cu sheet, it is necessary to increase the plastic strain ratio of Cu sheet. This study investigate the increase of plastic strain ratio of a Cu sheet after the first asymmetry rolling and annealing, and the second asymmetry rolling and annealing in air and Ar gas conditions. The average plastic strain ratio (Rm) was 0.951 and |ΔR| value was 1.27 in the initial Cu sheet. After the second 30.1% asymmetric rolling and annealing of Cu sheet at 1000℃ in air condition, the average plastic strain ratio (Rm) was 1.03 times higher. However, |ΔR| was 0.12 times lower than that of the initial specimen. After the second 18.8% asymmetric rolling and annealing of Cu sheet at 630℃ in Ar gas condition, the average plastic strain ratio (Rm) was 1.68 times higher and |ΔR| was 0.82 times lower than that of the initial specimen. These results are attributed to the change of the texture of Cu sheet due to the different annealing conditions.

Effect of Temper Rolling on Formability and Baking Hardenability in Baking Hardenable Steels for Auto Body Outer Panel (자동차 외판용 BH강판에서 성형성과 소부경화성에 미치는 조질압연의 영향)

  • Ko H. S.;Moon M. B.;Shin C. S.;Oh H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.37-44
    • /
    • 2004
  • Automotive company has been endeavoring to develop high strength steels to get higher fuel efficiency of car since the oil shortage in 1970s and to cope with the recent strict environmental regulation. Outer panels(Hood, Roof, Door and Fender) for automobile require higher dent resistance. Bake-hardenable(BH) steels are known as useful for their high deep drawability and high dent resistance. Recently BH steels are increasingly adapted for outer panel use due to their high drawability and high dent resistance. In this study effect of temper rolling on formability (textures, r value) and bake hardenability is investigated fur improving characteristic of bake-hardenable steels.

  • PDF

Simulation of Texture Evolution and Anisotropy Behavior in Dual Phase Steels during Deep Drawing Process (DP강의 디프드로잉 시 집합조직 발달과 이방성 거동 시뮬레이션)

  • Song, Young-Sik;Kim, Dae-Wan;Yang, Hoe-Seok;Han, Sung-Ho;Chin, Kwang-Gun;Choi, Shi-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.274-282
    • /
    • 2009
  • To investigate the evolution of deformation texture in dual phase (DP) steels during deep-drawing deformation, deep-drawing experiments were performed. Microtexture measurements were conducted using electron backscattered diffraction (EBSD) to analyze texture evolution. A rate-sensitive polycrystal model was used to predict texture evolution during deep-drawing deformation. In order to evaluate the strain path during deep-drawing deformation, a steady state was assumed in the flange part of a deep-drawn cup. A ratesensitive polycrystal model successfully predicted the texture evolution in DP steels during deep-drawing deformation. The final stable orientations were found to be strongly dependent on the initial location in the blank. Texture analysis revealed that the deep drawability of DP steels decreases as the true strain in the radial direction of the deep-drawn cup increases during deep-drawing deformation.

A Study on the Formability Factors of Axisymmetric Multi-Stage Deep Drawing Processes (축대칭 다단계 딥드로잉 공정의 성형인자에 대한 연구)

  • 여은구;조선형;이용신
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.6-11
    • /
    • 2002
  • Formability in deep drawing process depends not only on a drawability of workpiece material but also on process conditions such as die punch comer radius, lubricant conditions, punch-die clearance etc. For instance, bending resistance should be reduced by increasing die round appropriately, drawing load should be minimized by improving the lubricant condition between die and material, and blanking load should be increased by selecting a pertinent punch round and by augmenting the friction resistance in punch. In this study, a multi-stage deep drawing process is analyzed using ABAQUS. The effects of formability factors, such as die shoulder radius, punch-die clearance and friction coefficient are investigated, and the results are also discussed in detail.

A Study on the Formability Factors of Axisymmetric Multi-Stage Deep Drawing Processes (축대칭 다단계 딥드로잉 공정의 성형인자에 대한 연구)

  • 여은구;조선형;이용신
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.280-285
    • /
    • 2001
  • A good drawability of material itself is required. To improve the formability in deep drawing process. Besides that bending resistance should be reduced by increasing die round appropriately, drawing load should be minimized by improving the lubricant condition between die and material, and breaking load should be increased by selecting a pertinent punch round and by augmenting the friction resistance in Punch. In this study, a multi-stage deep drawing process is analyzed using ABAQUS, the effects of formability factors. Such as die shoulder radius, punch-die clearance and friction coefficient are investigated.

  • PDF

Influence of Die Shoulder Radius and Punch to Die Clearance for Multistage Deep Drawing of Complex Cylindrical Shell (원통형 용기의 다단계 디프드로잉에 대한 다이 곡률반경 및 틈새의 영향)

  • 김두환
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.262-268
    • /
    • 1999
  • This paper reviews the rules for optimizing die design and the process variables such as die shoulder radius and punch to die clearance, which are important factors in drawing the sheet metal without failures during deep drawing. To find the optimum conditions for improving deep drawability, a series of the experiments are performed, and the wall thinning and thickening variations are investigated in each process of deep drawing for a complex cylindrical shell. From the results of this proposed experiment, the optimum values of process variables are examined and discussed, and the usefulness of the present suggestion is shown.

  • PDF

A Study on the Warm Deep Drawability of Mg- Alloy Sheet Metal (마그네슘합금 판재의 온간 디프 드로잉성에 관한 연구)

  • 이용길;김종호;이종섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.117-120
    • /
    • 2003
  • Warm deep drawing which is one of the new forming technologies to improve formability of sheet metal is applied to the cylindrical cup drawing of Mg-alloy sheet metal. In experiments the temperature of die and blank holder is varied from room temperature to $300^{\circ}C$, while the punch is cooled by circulation of coolant to increase the fracture strength of workpiece on the punch corner area. Test material chosen for experiments is AZ31 magnesium sheet metal. Teflon film as a lubricant is used on both sides of a workpiece. The limit drawing ratio as well as thickness distributions of drawn cups are investigated and validity of warm deep drawing process is also discussed.

  • PDF

A Study on the Warm Deep Drawability of Sheets in Cr-Coated Die

  • Seo, Dae-Gyo;Lee, Jae-Dong;Heo, Young-Moo;Chang, Sung-Ho;Park, Yi-Chun;Kim, Heon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.839-846
    • /
    • 2001
  • Some deep drawing characteristics at elevated temperatures were investigated for the SCPI steel sheets by using a Cr-coated die. For this investigation, six different temperatures between room temperature and 250$\^{C}$, and six different drawing ratios ranging from 2.4 to 2.9 were considered. As a result, the limiting drawing ratio, the maximum drawing force and the maximum drawing depth were found to be affected sensitively by temperature, and more stable through-thickness strain distribution was observed at elevated temperatures. Some experimental results compared favorably with theoretical results obtained by using the finite element method.

  • PDF