• Title/Summary/Keyword: deep disposal

Search Result 236, Processing Time 0.028 seconds

Analysis on Design Change for Backfilling Solution of the Disposal Tunnel in the Deep Geological Repository for High-Level Radioactive Waste in Finland (핀란드 고준위방사성폐기물 심층처분시설 처분터널 뒤채움 설계 변경을 위한 연구사례 분석)

  • Heekwon Ku;Sukhoon Kim;Jeong-Hwan Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.435-444
    • /
    • 2023
  • In the licensing application for the deep geological disposal system of high-level radioactive waste in Finland, the disposal tunnel backfilling has been changed from the block/pellet (for the construction) to the granular type (for the operation). Accordingly, for establishing the design concept for backfilling, it is necessary to examine applicability to the domestic facility through analyzing problems of the existing method and improvements in the alternative design. In this paper, we first reviewed the principal studies conducted for changing the backfill method in the licensing process of the Finnish facility, and identified the expected problems in applying the block/pellet backfill method. In addition, we derived the evaluation factors to be considered in terms of technical and operational aspects for the backfilling solution, and then conducted a comparative analysis for two types of backfill methods. This analysis confirmed the overall superiority of the design change. It is expected that these results could be utilized as the technical basis for deriving the optimum design plan in development process of the Korean-specific deep disposal facility. However, applicability should be reviewed in advance based on the latest technical data for the detailed evaluation factors that must be considered for selecting the backfilling method.

Review on Rock-Mechanical Models and Numerical Analyses for the Evaluation on Mechanical Stability of Rockmass as a Natural Barriar (천연방벽 장기 안정성 평가를 위한 암반역학적 모델 고찰 및 수치해석 검토)

  • Myung Kyu Song;Tae Young Ko;Sean S. W., Lee;Kunchai Lee;Byungchan Kim;Jaehoon Jung;Yongjin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.445-471
    • /
    • 2023
  • Long-term safety over millennia is the top priority consideration in the construction of disposal sites. However, ensuring the mechanical stability of deep geological repositories for spent fuel, a.k.a. radwaste, disposal during construction and operation is also crucial for safe operation of the repository. Imposing restrictions or limitations on tunnel support and lining materials such as shotcrete, concrete, grouting, which might compromise the sealing performance of backfill and buffer materials which are essential elements for the long-term safety of disposal sites, presents a highly challenging task for rock engineers and tunnelling experts. In this study, as part of an extensive exploration to aid in the proper selection of disposal sites, the anticipation of constructing a deep geological repository at a depth of 500 meters in an unknown state has been carried out. Through a review of 2D and 3D numerical analyses, the study aimed to explore the range of properties that ensure stability. Preliminary findings identified the potential range of rock properties that secure the stability of central and disposal tunnels, while the stability of the vertical tunnel network was confirmed through 3D analysis, outlining fundamental rock conditions necessary for the construction of disposal sites.

Development of Biosphere Assessment Modeling Strategy for Deep Geological Disposal in Generic Site of the Korean Peninsula

  • Do Hyun Kim;Wontak Lee;Dongki Kim;Jonghyun Kim;Joowan Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.149-164
    • /
    • 2023
  • As part of the safety case development for generic disposal sites in Korea, it is necessary to develop generic assessment models using various geosphere-biosphere interfaces (GBIs) and potentially exposed groups (PEGs) that reflect the natural environmental characteristics and the lifestyles of people in Korea. In this study, a unique modeling strategy was developed to systematically construct and select Korean generic biosphere assessment models. The strategy includes three process steps (combination, screening, and experts' scoring) for the biosphere system conditions. First, various conditions, such as climate, topography, GBIs, and PEGs, were combined in the biosphere system. Second, the combined calculation cases were configured into interrelation matrices to screen out some calculation cases that were highly unlikely or less significant in terms of the exposure dose. Finally, the selected calculation cases were prioritized based on expert judgment by scoring the knowledge, probability, and importance. The results of this study can be implemented in the development of biosphere assessment models for Korean generic sites. It is believed that this systematic methodology for selecting the candidate calculation cases can contribute to increasing the confidence of future site-specific biosphere assessment models.

Case of Geophysical Survey Guideline for Site Investigation of Spent Nuclear Fuel disposal: Focusing on airborne electromagnetic and seismic reflection survey (사용후핵연료 처분시설 부지조사를 위한 물리탐사 수행지침서 작성 사례 : 항공전자탐사와 탄성파 반사법탐사 중심으로)

  • NamYoung Kong;Hagsoo Kim;Yoonsup Moon;Manho Han
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.69-83
    • /
    • 2024
  • Considering importance and specificity, site investigations for deep geological disposal of Spent Nuclear Fuel require stringent quality control, unlike general geotechnical investigations for tunnels and bridges. In this study, we present a case of selecting geophysical survey method for individual site investigation stage and preparing geophysical survey guideline. The proposed geophysical survey guidelines include procedures, considerations, and quality control for exploration planning, data acquisition, data processing, and interpretation. They comprehensively summarize the contents of airborne electromagnetic survey and seismic reflection survey.

A Case Analysis on the Spalling Evaluation of the Deep Rock Mass and Pillar Spalling Modeling (고심도 암반의 스폴링 평가에 대한 사례 분석 및 광주 스폴링 모델링)

  • Park, Seunghun;Kwon, Sangki;Lee, Changsoo;Lee, Jaewon;Yoon, Seok;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.109-135
    • /
    • 2020
  • Globally, the deepening depth in the underground is a situation of the high interest for a purpose of the development of various facilities. The development of deep underground space should be based on the structural stability of rocks. Spalling is known to have an impact on the structural stability degradation in deep underground space. As an attempt to predict spalling, many researchers have proposed predicted conditions in accordance with stress states which occur around the tunnel, rock conditions, and types of rock. In addition, the analysis on spalling method has been verified by using computer modeling such as FLAC, EXAMINE, Insight 2D, UDEC and FRACOD, along with in-situ measurement results. In Canada URL (Underground Research Tunnel), CWFS model (Cohesion Weakening Frictional Strengthening) was used to precisely predict for the state of spalling, comparing spalling modeling. CWFS model has been identified as a reliable method for predicting such phenomena. This study aims to analyze several cases of spalling, and then make a comparison between the conditions for spalling occurrence and the predicted results of model CWFS. With this, it investigates the applicability of prediction of spalling, targeting pillar under deep depth condition.

Natural Analogue Study on the Disposal of Radioactive Waste Using Uranium Deposits and Geochemical Behaviors of Uranium (우라늄광상을 이용한 방사성폐기물 처분 자연유사연구와 우라늄의 지화학적 거동)

  • Min-Hoon Baik;YeoJin Ju;Dawoon Jeong;Ji-Hun Ryu
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.565-580
    • /
    • 2023
  • In this study, we reviewed and summarized comprehensive roles and importance of natural analogue studies for demonstrating the safety and improving the reliability of the safety for the deep geological disposal of high-level radioactive waste. We also investigated domestic and foreign status of natural analogue studies in order to study and substantiate complex and various radionuclide behaviors in subsurface disposal environments. In addition, we investigated and uranium behaviors in groundwater and rock in uranium deposits including domestic uranium deposits in Ogcheon Metamorphic Belt and biogeochemical interactions in geological environments. Although there are many limitations and uncertainties in directly using the information and data for uranium behaviors obtained from uranium deposits in the disposal safety assessment, the information and data can be utilized in the disposal safety assessment and safety case construction both in qualitative and partly quantitative ways.