• Title/Summary/Keyword: decrease

Search Result 35,587, Processing Time 0.067 seconds

Evaluation of Spatial Dose Rate in Working Environment during Non-Destructive Testing using Radioactive Isotopes (방사성동위원소를 이용한 비파괴 검사 시 작업환경 내 공간선량률 평가)

  • Cho, Yong-In;Kim, Jung-Hoon;Bae, Sang-Il
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.373-379
    • /
    • 2022
  • The radiation source used for non-destructive testing have permeability and cause a scattered radiation through collisions of surrounding materials, which causes changes in the surrounding spatial dose. Therefore, this study attempted to evaluate and analyze the distribution of spatial dose by source in the working environment during the non-destructive test using monte carlo simulation. In this study, Using FLUKA, a simulation code, simulates 60Co, 192Ir, and 75Se source used in non-destructive testing, The reliability of the source term was secured by comparing the calculated dose rate with the data of the Health and Physics Association. After that, a non-destructive test in the radiation safety facility(RT-room) was designed to evaluate the spatial dose according to the distance from the source. As a result of the spatial dose evaluation, 75Se source showed the lowest dose distribution in the frontal position and 60Co source showed a dose rate of about 15 times higher than that of 75Se and about 2 times higher than that of 192Ir. In addition, the spatial dose according to the distance tends to decrease according to the distance inverse square law as the distance from the source increases. Exceptionally, 60Co, 192Ir, and 75Se sources confirmed a slight increase within 2 m of position. Based on the results of this study, it is believed that it will be used as supplementary data for safety management of workers in radiation safety facilities during non-destructive testing using radioactive isotopes.

A Study on Status of Landscape Architecture Industry with National Statistics (국가통계자료를 활용한 조경산업 현황 연구)

  • Choi, Ja-Ho;Yoon, Young-Kwan;Koo, Bon-Hak
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.5
    • /
    • pp.40-53
    • /
    • 2022
  • This study carried out to provide the methodology and basic status material of using Korean national statistics needed to find the actual state of the landscape architecture industry. The landscape architecture industry was classified into 'Design', 'Construction Management', 'construction', 'Maintenance & Management', 'Materials', 'Research', 'Education', and 'Administration' areas. In each field, business types were systemized and associated in accordance with Korean standard industrial classification and legislations pertinent to construction. Among them, the business types directly defined in the construction related legislations under the Ministry of Land, Infrastructure and Transport were focused on, and the establishment, association, integration, distribution, duplication, and omission of national statistics were analyzed. As a result, the business types of statistical analysis were selected. In order for commonality of statistical items and minimized error of interpretation, semantic analysis was conducted. Finally, the number of registered business types, the number of workers, and sales were selected. Based on them, the analysis framework applicable to fundamental analysis and evaluation of the actual state of the industry was proposed. Actual national statical data were applied for analysis and evaluation. In 2019, the number of registered business types related to the landscape architecture industry was 12,160, the number of workers by business type was 106,296, and the sales by business type were 8,308.5 billion KRW. The number of registered business types and the number of workers had been on the rise from 2017, whereas the sales had been on the decrease. It is required to come up with a plan for industrial development. This study was conducted with the national statistics established by multiple public institutions, so that there are limitations in securing consistency and reliability. Therefore, it is necessary to establish systematic and consistent national statistics in accordance with 「Landscaping Promotion Act」. In the future, it will planned to research application and development plans of national statistics according to subjects including park and green.

Water Level and Quality Variations of CO2-rich Groundwater and Its Surrounding Geology in the Chungju Angseong Spa Area, South Korea: Considerations on Its Sustainability (충주 앙성지역 탄산천의 수위/수질 변동과 주변 지질 특성: 탄산천의 지속가능성에 대한 고찰)

  • Moon, Sang-Ho;Kee, Weon-Seo;Ko, Kyung-Seok;Lee, Cholwoo;Choi, Hanna;Koh, Dong-Chan
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.477-495
    • /
    • 2022
  • This study examined the sustainability of CO2-rich water by analyzing the water level and water quality change pattern with the amount of its use in Angseong area, Chungju. The origin and supply of CO2 component were discussed in consideration of 87Sr/86Sr ratio, occurrence of CO2-rich fluid inclusions in nearby W-Mo deposits and other surrounding geological characteristics. According to the data from 1986 to 2017, the depth of the water level of CO2-rich water was significantly lowered in the late period (2009-2015) than in the early period (1986-1992) of the development of hot spa wells, and the optimal yields for pumping tests also showed a tendency to gradual decrease. Concentrations of CO2 component also decreased continuously in the later stages compared to the early stages of development, but it has been stable since 2012. It is inferred that the geological environment related to forming W-Mo quartz vein deposits (0.5×1.5×several km) around the study area are largely involved in the origin and supply of CO2 component, and the supply of CO2 component is not infinitely supplied from deep current magma activity. Rather, since it is finitely supplied from a restricted subsurface region formed in the past geological period, it is necessary to efficiently control its use in order to maintain the sustainability of CO2-rich water in the study area.

The Climatic Influence on Spikelet Formation and Yield of Lowlam Rice II. Climatic Consumptive Effect for Spikelet Formation (수도의 영화수성립과 수량에 미치는 기상환경의 영향에 관한 연구 II. 영화수 성립에 미치는 기상소모효과)

  • Lee, Jong-Chul;Ahn, Su-Bong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.4
    • /
    • pp.366-375
    • /
    • 1984
  • In order to confirm the effect of climatic consumption index (C C I) on the number of spikelets and yield of rice, 3 levels of shading rates such as 0, 25, 50% of full light were treated during the tillering stage, reproductive growth stage and ripening period, respectively, in a phytotron controlled with day/ night temperature of 20/10$^{\circ}C$ and 30/20$^{\circ}C$, and field at Crop Experiment Station, Suwon, Korea. The results are as follows: 1. As solar radiation decreased during the reproductive growth stage in 30/20$^{\circ}C$ or field condition, the number of spikelets per panicle was decreased due to the decrease of the number of differentiated secondary rachis branches and spikelets as well as the increase of the number of degenerated secondary rachis branches and spikelets. 2. Our results showed slight negative correlation between C C I of the reproductive growth stage and number of panicles per square meter and number of differentiated secondary rachis branches. On the other hand, there was highly significant positive correlation between C C I of the reproductive growth stage and the number of degenerated secondary rachis branches and spikelets, and negative correlation in number of differentiated spikelets. 3. The shading during the reproductive growth stage did not affect on the percentage of ripened grains and 1000 grains weight of hulled rice, whereas those were decreased with shading during the ripened period. 4. Influence of shading in each growing stage on the yield was severe in the order of ripened period, reproductive growth stage, tillering stage. 5. Respiration rate in Jinheung was higher than that of Tongil at low temperature, but reversed above 30$^{\circ}C$. Respiratory coefficients (Q$\sub$10/) of Tongil and Jinheung were 2.74 and 1.96, respectively. Respiration/ photosynthesis ratio in Jinheung was higher than that of Tongil at low temperature, while higher in Tongil above 32$^{\circ}C$. 6. Transportation of $\^$14/C was restricted at 20/10$^{\circ}C$ in Tongil, however, there was no differences at 30/20$^{\circ}C$ in both Tongil and Jinheung. The influence of shading on the transportation of $\^$14/C did not affect at 20/10$^{\circ}C$, but it was hampered with shading at 30/20$^{\circ}C$ in both varieties.

  • PDF

Ecological Study on Poisonous Snake and Investigation of the Venom Characteristics, Snakebiting Frequenty in Korea (한국산 독사의 생태학적 특징 및 독성, 교상빈도에 관한 조사, 연구)

  • Shim, Jae-Han;Son, Young-Jong;Lee, Sang-Seob;Park, Kyung-Seok;Oh, Hee-Bok;Park, Young-Do
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.1
    • /
    • pp.58-77
    • /
    • 1998
  • Four species(25%) of Viperidae(Agkistrodon brevicaudus, Agkistrodon ussuriensis, Agkistrodon saxatilis) and Cloubridae(Rhabdophis tigrenus tigrenus) were Korean poisonous snake. Copulation season of these species was from July to August. Reproduction mode of genus Agkistrodon species was ovoviviparous but Rhabdophis tigrinus tigrinus was the other pattern of oviparous. Optimal movement temperature range was from 20$\circ $C to 29$\circ $C(March~September). Wjen atmosphere temperature was below 10$\circ $C, at that time they hibernate at the ground, rock bottom, stone wall and embankment around the end of a field. The venom of these snakes consist mainly Hematoxin, Cytolysin, Neurotoxin and Cardiotoxin of poisonous liquids. These material injection to animal cause systemic syndrome such as Dizziness(25.7%), Vomitting(23.1%), Fever(22%), Visual trouble(18%), Headace(17.7%), Dyspnoea(17.6%) and bring about other local syndrome such as Discoloration(54.2%), Bleeding(20.2%), Bullae(10.7%) and Skin ulcer(!0.8%). The annual distribution was appeared to decrease 1972 after 1992 and average snakebiting patients was 25.6 per year, but practically total estimated snakebiting was 2,700 per year. The seasonal distribution was most frequent in August(25%), and mortality was 1.8%(26 per 1,430). The sex ratio was 2:1 and according to age distribution, it was most prevalent at one's fifties(19%). The most frequent place where the accident happened was the field(48.2%) and most predilection site of the body for victim were hand(47.8%) and foot(39.5%), Commonly bite snake were Agkistrodon ussuriensis(27.1%), Agkistrodon brevicaudus(22.6%) and Agkistrodon saxatilis(9.6%) but 40.7% of species could not be identified. Treatment of antivenin patient was 75.9% (1,068/1,407).

  • PDF

The Effects of 8-week Ketone Body Supplementation on Endurance Exercise Performance and Autophagy in the Skeletal Muscle of Mice (8주 케톤체 투여가 마우스 지구성 운동수행능력과 골격근의 자가포식에 미치는 영향)

  • Jeong-sun Ju;Min-joo Park;Dal-woo Lee;Dong-won Lee
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.242-251
    • /
    • 2023
  • The purpose of this study was to investigate the effects of 8-week β-hydroxybutyrate (β-HB) administration with and without endurance exercise training on endurance exercise performance and skeletal muscle protein synthesis and degradation using a mouse model. Forty-eight male wild-type ICR mice (8 weeks old) were randomly divided into four groups: sedentary control (Sed+Con), (Sed+Con), sedentary β-HB (Sed+β-HB), exercise control (Exe+Con), and exercise β-HB (Exe+β-HB). β-HB was dissolved in PBS (150 mg/ml) and injected subcutaneously daily (250 mg/kg) for 8 weeks. Mice performed 5 days/week of a 20 min treadmill running exercise for 8 weeks. The running exercise was carried out at a speed of 10 m/min at a 10° incline for 5 min, and then the speed was increased by 1 m/min for every 1 min of the remaining 15 min. Following 8 weeks of treatments, visceral fat mass and skeletal muscle mass, blood parameters, and the markers for autophagy and protein synthesis were analyzed. The data were analyzed with one-way ANOVA (p<0.05) using the SPSS 21 program. Eight weeks of Exe+β-HB treatment significantly lowered blood lactate levels compared with the other three groups (Sed+Con, Sed+β-HB, and Exe+β-HB) Exe+β-HB) (p<0.05). Eight weeks of Exe+β-HB significantly increased maximal running time (time to exhaustion) compared with the Sed+Con and Exe+Con groups (p<0.05). Eight weeks of β-HB administration significantly decreased autophagy flux and autophagy-related proteins in the skeletal muscle of mice (p<0.05). Conversely, the combined treatment of β-HB and endurance exercise training increased protein synthesis (mTOR signaling and translation) (p<0.05). The 8-week β-HB treatment and endurance exercise training had synergistic effects on the increase in endurance performance, increase in protein synthesis, and decrease in protein degradation in the skeletal muscle of mice.

An Empirical Study on the Improvement of In Situ Soil Remediation Using Plasma Blasting, Pneumatic Fracturing and Vacuum Suction (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화 개선 효과에 대한 실증연구)

  • Jae-Yong Song;Geun-Chun Lee;Cha-Won Kang;Eun-Sup Kim;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.85-103
    • /
    • 2023
  • The in-situ remediation of a solidified stratum containing a large amount of fine-texture material like clay or organic matter in contaminated soil faces limitations such as increased remediation cost resulting from decreased purification efficiency. Even if the soil conditions are good, remediation generally requires a long time to complete because of non-uniform soil properties and low permeability. This study assessed the remediation effect and evaluated the field applicability of a methodology that combines pneumatic fracturing, vacuum extraction, and plasma blasting (the PPV method) to improve the limitations facing existing underground remediation methods. For comparison, underground remediation was performed over 80 days using the experimental PPV method and chemical oxidation (the control method). The control group showed no decrease in the degree of contamination due to the poor delivery of the soil remediation agent, whereas the PPV method clearly reduced the degree of contamination during the remediation period. Remediation effect, as assessed by the reduction of the highest TPH (Total Petroleum Hydrocarbons) concentration by distance from the injection well, was uncleared in the control group, whereas the PPV method showed a remediation effect of 62.6% within a 1 m radius of the injection well radius, 90.1% within 1.1~2.0 m, and 92.1% within 2.1~3.0 m. When evaluating the remediation efficiency by considering the average rate of TPH concentration reduction by distance from the injection well, the control group was not clear; in contrast, the PPV method showed 53.6% remediation effect within 1 m of the injection well, 82.4% within 1.1~2.0 m, and 68.7% within 2.1~3.0 m. Both ways of considering purification efficiency (based on changes in TPH maximum and average contamination concentration) found the PPV method to increase the remediation effect by 149.0~184.8% compared with the control group; its average increase in remediation effect was ~167%. The time taken to reduce contamination by 80% of the initial concentration was evaluated by deriving a correlation equation through analysis of the TPH concentration: the PPV method could reduce the purification time by 184.4% compared with chemical oxidation. However, the present evaluation of a single site cannot be equally applied to all strata, so additional research is necessary to explore more clearly the proposed method's effect.

A Study on Image-Based Mobile Robot Driving on Ship Deck (선박 갑판에서 이미지 기반 이동로봇 주행에 관한 연구)

  • Seon-Deok Kim;Kyung-Min Park;Seung-Yeol Wang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1216-1221
    • /
    • 2022
  • Ships tend to be larger to increase the efficiency of cargo transportation. Larger ships lead to increased travel time for ship workers, increased work intensity, and reduced work efficiency. Problems such as increased work intensity are reducing the influx of young people into labor, along with the phenomenon of avoidance of high intensity labor by the younger generation. In addition, the rapid aging of the population and decrease in the young labor force aggravate the labor shortage problem in the maritime industry. To overcome this, the maritime industry has recently introduced technologies such as an intelligent production design platform and a smart production operation management system, and a smart autonomous logistics system in one of these technologies. The smart autonomous logistics system is a technology that delivers various goods using intelligent mobile robots, and enables the robot to drive itself by using sensors such as lidar and camera. Therefore, in this paper, it was checked whether the mobile robot could autonomously drive to the stop sign by detecting the passage way of the ship deck. The autonomous driving was performed by detecting the passage way of the ship deck through the camera mounted on the mobile robot based on the data learned through Nvidia's End-to-end learning. The mobile robot was stopped by checking the stop sign using SSD MobileNetV2. The experiment was repeated five times in which the mobile robot autonomously drives to the stop sign without deviation from the ship deck passage way at a distance of about 70m. As a result of the experiment, it was confirmed that the mobile robot was driven without deviation from passage way. If the smart autonomous logistics system to which this result is applied is used in the marine industry, it is thought that the stability, reduction of labor force, and work efficiency will be improved when workers work.

Growth and Quality Characteristics of Korean Bread Wheat in Response to Elevated Temperature during their Growing Season (밀 재배기간 온도상승이 빵용 밀의 생육 및 품질 특성에 미치는 영향)

  • Chuloh Cho;Han-yong Jeong;Yurim Kim;Jinhee Park;Kyeong-Hoon Kim;Kyeong-Min Kim;Chon-Sik Kang;Jong-Min Ko;Jiyoung Shon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.234-241
    • /
    • 2022
  • Wheat (Triticum aestivum L.) is a major staple foods and is in increasing demand in the world. The elevated temperature caused by changes in climate and environmental conditions is a major factor affecting wheat development and grain quality. The optimal temperature range for winter wheat is between 15 and 25℃, and it is necessary to study the physiological characteristic of wheat according to elevated temperatures. This study presents the effect of elevated temperature on the yield and quality of two Korean bread wheat (Baekkang and Jokyoung) in temperature gradient tunnels (TGT). Two bread wheat cultivars were grown in TGT at four different temperature conditions: T0 (control, near ambient temperature), T1 (T0+1℃), T2 (T0+2℃), (T0+2℃), T3 (T0+3℃). The period from sowing to heading stage accelerated and the number of grains per spike and grain yield reduced under T3 condition compared with those under T0 condition. Grain filling rate and grain maturity also accelerated with elevated temperature (T3). The increase in temperature led to the increase in protein contents, whereas decreased the total starch contents. These results are consistent with the decreased expression of starch synthesis genes and increased gliadin synthesis or gluten metabolism genes during the late grain filling stage. Taken together, our results suggest that the increase in temperature (T3) led to the decrease in grain yield by regulating the number of grains/spike, whereas increased the protein content by regulating the expression of starch and gliadin-related genes or gluten metabolism process genes expression. In addition, our results provide a useful physiological information on the response of wheat to heat stress.

Predicting the Effects of Agriculture Non-point Sources Best Management Practices (BMPs) on the Stream Water Quality using HSPF (HSPF를 이용한 농업비점오염원 최적관리방안에 따른 수질개선효과 예측)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • Non-point source (NP) pollutants in an agricultural landuse are discharged from a large area compared to those in other land uses, and thus effective source control measures are needed. To develop appropriate control measures, it is necessary to quantify discharge load of each source and evaluate the degree of water quality improvement by implementing different options of the control measures. This study used Hydrological Simulation Program-FORTRAN (HSPF) to quantify pollutant discharge loads from different sources and effects of different control measures on water quality improvements, thereby supporting decision making in developing appropirate pollutant control strategies. The study area is the Gyeseong river watershed in Changnyeong county, Gyeongsangnam-do, with agricultural areas occupying the largest proportion (26.13%) of the total area except for the forest area. The main pollutant sources include chemical and liquid fertilizers for agricultural activities, and manure produced from small scale livestock facilities and applied to agriculture lands or stacked near the facilities. Source loads of chemical fertilizers, liquid fertilizers and livestock manure of small scale livestock facilities, and point sources such as municipal wastewater treatment plants (WWTPs), community WWTPs, private sewage treament plants were considered in the HSPF model setup. Especially, NITR and PHOS modules were used to simulate detailed fate and transport processes including vegitation uptake, nutrient deposition, adsorption/desorption, and loss by deep percolation. The HSPF model was calibrated and validated based on the observed data from 2015 to 2020 at the outlet of the watershed. The calibrated model showed reasonably good performance in simulating the flow and water quality. Five Pollutants control scenarios were established from three sectors: agriculture pollution management (drainge outlet control, and replacement of controlled release fertilizers), livestock pollution management (liquid fertilizer reduction, and 'manure management of small scale livestock facilities) and private STP management. Each pollutant control measure was further divided into short-term, mid-term, and long-term scenarios based on the potential achievement period. The simulation results showed that the most effective control measure is the replacement of controlled release fertilizers followed by the drainge outlet control and the manure management of small scale livestock facilities. Furthermore, the simulation showed that application of all the control measures in the entire watershed can decrease the annual TN and TP loads at the outlet by 40.6% and 41.1%, respectively, and the annual average concentrations of TN and TP at the outlet by 35.1% and 29.2%, respectively. This study supports decision makers in priotizing different pollutant control measures based on their predicted performance on the water quality improvements in an agriculturally dominated watershed.