• Title/Summary/Keyword: decomposition temperature

Search Result 1,472, Processing Time 0.025 seconds

Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed (카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구)

  • Lee, Seung-Chul;Yoon, Yong-Hee;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.97-100
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2$ - free hydrogen . The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by TEM image.

  • PDF

A Study on the Thermal Decomposition Characteristics of Nitrophenylhydrazine (니트로페닐하이드라진의 열분해 특성에 관한 연구)

  • 김관응;이근원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.75-79
    • /
    • 2001
  • For handling and storage of reactive chemicals, the hazard evaluations have been extremely important. In the chemical industry, the most concerns are focused on the thermal harzards such as runaway reactions and thermal decompositions, which are mostly governed by thermodynamics and reaction kinetics or these reactive chemical in the system. This study no investigated the thermal decomposition characteristics of nitrophenylhydrazine isomers by using differential scanning calorimeter(DSC) and accelerating rate calorimeter(ARC). Experimental results showed that exothermic onset-temperatures in nitrophenylhydrazine(NPH) isomers were about 160-$210^{\circ}C$ by DSC and 100-$150^{\circ}C$ by ARC. The decomposition temperature acquired by ARC was about 50-$60^{\circ}C$ lower than that by DSC. Reaction heats were about 40-100cal/g by DSC and 330-750ca1/g by ARC. While ortho isomer of NPH show two distinct exothermic peaks, para isomer shows a single peak in DSC curves. The first exothermic peak for 2-NPH is mainly due to intramolecular dehydration forming 1-hydroxybenzotriazole(HOBT) and the second exothermic peak is mainly due to the decomposition of HOBT formed in the first step of decomposition. The exothermin peak in the DSC curve for 4-NPH is mainly due to dissociation of hydrazino and nitro groups.

  • PDF

Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed (유동층 반응기에서 카본블랙 촉매를 이용한 프로판의 촉매 분해에 의한 수소생산 연구)

  • Jung, Jae-Uk;Nam, Woo-Seok;Yoon, Ki-June;Lee, Dong-Hyun;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.85-88
    • /
    • 2006
  • A fluidized bed reactor made of quartz with 0.055m I.D. and 1.0m in height was employed for the thermocatalytic decomposition of propane to produce $CO_2$-free hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The propane decomposition rate used carbon black N33O as a catalyst. The propane decomposition reaction was carried out at the temperature range of $600{\sim}800^{\circ}C$, paropane gas velocity of $1.0 U_{mf}\;3.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The carbon which was by-product of methane decomposition reaction was deposited on the catalyst surface that was observed by SEM. Resulting production in our experiment were not only hydrogen but also several by products such as methane, ethylene, ethane, and propylene.

  • PDF

Study on the Characteristics of Nitrous Oxide Catalytic Decomposition (아산화질소 촉매 분해 특성 연구)

  • Yong, Sung-Ju;Park, Dae-Il;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.58-61
    • /
    • 2009
  • The characteristics of nitrous oxide catalytic decomposition were studied to utilize the nitrous oxide as a propellant. The Ru and Pt were selected as nitrous oxide decomposition catalysts and loaded in the $Al_2O_3$ support using an impregnation method. The nitrous oxide conversions as a variation of GHSV and reaction temperature were measured in a tubular reactor. At the low GHSV and high temperature, the conversion was increased, and Ru/$Al_2O_3$ catalyst showed better performance than Pt/$Al_2O_3$ catalyst.

  • PDF

Nanoconfinement effects of MCM-41 on the thermal decomposition of metal borohydrides

  • Kim, Sanghoon;Song, Hyejin;Kim, Chul
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • We used differential scanning calorimetry and a thermogravimetric analysis to investigate the effect of being confined in mesoporous MCM-41 on the decomposition of lithium borohydride and magnesium borohydride when heated. The confinement did not cause a phase transition of the metal borohydrides inside MCM-41, but did lower their decomposition temperature. With the exception of a lowering of the temperature, the decomposition reaction mechanism of the metal borohydrides was nearly the same for both the bulk and confined samples.

Investigating the Reaction Characteristics of Electrolyte Dimethyl Carbonate(DMC) under Thermal Runaway Conditions of Lithium-Ion Battery (리튬이온배터리 열폭주 조건에서 전해질 Dimethyl Carbonate(DMC) 반응 특성 분석)

  • Jeon, Min-Kyu;Lee, Eun-Song;Yoon, Hong-Sik;Keel, Sang-In;Park, Hyun-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1275-1284
    • /
    • 2022
  • This study provides an investigating the electrolyte reaction characteristics during thermal runaway of a lithium-ion battery(LIB). Dimethyl carbonate(DMC) is known as the main substance that makes up the electrolyte. The mono-molecular decomposition characteristics of DMC were derived through numerical analysis. Cobalt oxide can release oxygen under high temperature conditions. Also, DMC is converted to CH4, H2, CO, and CO2. Especially, it was found that the decomposition of the DMC begins at a temperature range of 340-350℃, which dramatically increases the internal pressure of the LIB. In the by-products gases, the molar ratio of CO and CO2 changed according to the molecular structure of DMC and temperature conditions. The correlation of the [CO]/[CO2] ratio according to the temperature during thermal runaway was derived, and the characteristics of the reaction temperature could be estimated using the molar ratio as an indicator. In addition, the oxidation and decomposition characteristics of DMC according to the residence time for each temperature were estimated. When DMC is exposed to low temperature for a long time, both oxidation and decomposition may occur. There is possibility of not only increasing the internal pressure of the LIB, but also promoting thermal runaway. In this study, internal environment of LIB was identified and the reaction characteristics between the active materials of the cathode and electrolyte were investigated.

Numerical Study on Heat Transfer Characteristics in a directly Heated $SO_3$ Decomposer for the Sulfur-Iodine process (황-요오드 공정용 직접접촉 삼산화황 분해반응기내 열전달 특성에 관한 수치적 연구)

  • Choi, Jae-Hyuk;Shin, Young-Joon;Tak, Nam-Il;Lee, Ki-Young;Chang, Jong-Wha;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2244-2249
    • /
    • 2007
  • A directly heated $SO_3$ decomposer for the sulfur-iodine and hybrid-sulfur processes has been introduced and analyzed by using a computational fluid dynamics code(CFD) with the CFX 5.7.1. The use of a directly heated decomposition reactor in conjunction with a VHTR allows higher decomposition reactor operating temperature. However, the thermochemical and hybrid hydrogen production processes accompanied with the high temperature and strongly corrosive operating conditions basically have material problems. In order to resolve these problems, we carried out the development of a structural material and equipment design technologies. The results show that the maximum temperature of the structural material (RA330) could be maintained at 800$^{\circ}C$ or less. Also, it can be seen that the mean temperature of the reaction region packed with catalysts in the $SO_3$ decomposition reactor could satisfy the temperature condition of around 850 $^{\circ}C$ which is the target temperature in this study.

  • PDF

Thermal Properties of Chloroprene Rubber with $^{60}Co\;{\gamma}$-ray Irradiation ($^{60}Co\;{\gamma}$-선 조사에 따른 클로프렌 고무의 열적 특성)

  • Kim, Ki-Yup;Lee, Chung;Ryu, Boo-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.64-70
    • /
    • 2003
  • The thermal properties of chloroprene rubber (CR) with $^{60}Co\;{\gamma}$-ray irradiation has been investigated. The prepared CR was irradiated up to 1000kGy radiation dose by $^{60}Co\;{\gamma}$-ray and the radiation degradation of CR was investigated by thermogravimetric analysis and differential acanning calorimetry. Dynamic mechanical properties measurement and FT-IR observation are carried out as well. From these analyses results, the glass transition temperature($T_g$), decomposition onset temperature(DOT), oxidative induction time(OIT), the peak temperature of loss modulus and mechanical tan ${\delta}$ values were compared for the radiation degradation level of CR. The tendency between $T_g$ and peak temperature of loss modulus and mechanical tan ${\delta}$ agreed well with radiation doses. Decomposition temperature, OIT and DOT showed the same tendencies as increasing radiation doses. It was verified that these analyses are available to estimate the degradation level of CR.

Charateristics of Hydrogen Iodide Decomposition using Ni-Pt Bimetallic Catalyst in Sulfur-Iodine Process (황-요오드 열화학 수소 생산 공정에서 니켈-백금 이원금속 촉매를 이용한 요오드화수소 분해 특성)

  • Kim, Soo-Young;Go, Yoon-Ki;Park, Chu-Sik;Bae, Ki-Kwang;Kim, Young-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This study was performed to develop a low Pt content catalyst as a catalyst for HI decomposition in S-I process. Bimetallic catalysts added various amounts of Pt on a silica supported Ni catalyst were prepared by impregnation method. HI decomposition was carried out using a fixed bed reactor. As a result, Ni-Pt bimetallic catalyst showed enhanced catalytic activity compared with each monometallic catalyst. Deactivation of Ni-Pt catalyst was not observed while deactivation of Ni monometallic catalyst was rapidly occurred in HI decomposition. The HI conversion of Ni-Pt bimetallic catalyst was increased similar to Pt catalyst with increase of the reaction temperature over a temperature range 573K to 773K. From the TG analysis, it was shown that $NiI_2$ remained on the Ni(5.0)-Pt(0.5)/$SiO_2$ catalyst after the HI decomposition reaction was decomposed below 700K. It seems that small amount of Pt in bimetallic catalyst increase the decomposition of $NiI_2$ generated after the decomposition of HI. Consequently, it was considered that the activity of Ni-Pt bimetallic catalyst was kept during the HI decomposition reaction.

Prediction of Thermal Decomposition Temperature of Polymers Using QSPR Methods

  • Ajloo, Davood;Sharifian, Ali;Behniafar, Hossein
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.2009-2016
    • /
    • 2008
  • The relationship between thermal decomposition temperature and structure of a new data set of eighty monomers of different polymers were studied by multiple linear regression (MLR). The stepwise method was used in order to variable selection. The best descriptors were selected from over 1400 descriptors including; topological, geometrical, electronic and hybrid descriptors. The effect of number of descriptors on the correlation coefficient (R) and F-ratio were considered. Two models were suggested, one model having four descriptors ($R^2$ = 0.894, $Q^2_{cv}$ = 0.900, F = 172.1) and other model involving 13 descriptors ($R^2$ = 0.956, $Q^2_{cv}$ = 0.956, F = 125.4).