• Title/Summary/Keyword: decomposition temperature

Search Result 1,472, Processing Time 0.029 seconds

Decomposition of Trichloroethylene by Using a Non-Thermal Plasma Process Combined with Catalyst (저온 플라즈마·촉매 복합공정을 이용한 트리클로로에틸렌의 분해에 관한 연구)

  • Mok, Young-Sun;Nam, Chang-Mo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.269-275
    • /
    • 2003
  • A non-thermal plasma process combined with $Cr_2O_3/TiO_2$ catalyst was applied to the decomposition of trichloroethylene (TCE). A dielectric barrier discharge reactor operated with AC high voltage was used as the non-thermal plasma reactor. The effects of reaction temperature and input power on the decomposition of TCE and the formation of byproducts including HCl, $Cl_2$, CO, NO, $NO_2$ and $O_3$ were examined. At an identical input power, the increase in the reaction temperature from 373 K to 473 K decreased the decomposition of TCE in the plasma reactor. The presence of the catalyst downstream the plasma reactor not only enhanced the decomposition of TCE but also affected the distribution of byproducts, significantly. However, synergistic effect as a result of the combination of non-thermal plasma with catalyst was not observed, i.e., the TCE decomposition efficiency in this plasma-catalyst combination system was almost similar to the sum of those obtained with each process.

  • PDF

Synthesis of CoFe2O4 Magnetic Nanoparticles by Thermal Decomposition

  • Soundararajan, D.;Kim, Ki Hyeon
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.5-9
    • /
    • 2014
  • The amine functionalized $CoFe_2O_4$ nanoparticles were prepared by thermal decomposition method at reflux temperatures $160^{\circ}C$ and $172^{\circ}C$. The obtained $CoFe_2O_4$ nanoparticles at $160^{\circ}C$ reflux temperature show aggregation free poly-dispersed nanoparticles in 4-15 nm range. In an elevated reflux temperature of $172^{\circ}C$, $CoFe_2O_4$ show aggregated poly-dispersed nanoparticles in the size range of 20-46 nm. The saturation magnetization value at 300 K exhibited 51 emu/g at reflux temperature of $160^{\circ}C$. However, the sample synthesized at an elevated temperature of $172^{\circ}C$ has shown a coercive field value of 560 Oe with saturation magnetization of 68 emu/g.

Hydrolsis Behaviour of Antheraea pernyi Silk Fiber Treated with HCI (염산처리 작잠견사의 가수분해거동)

  • 권해용;이광길;이용우;여주홍;엄인철
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.2
    • /
    • pp.163-168
    • /
    • 1998
  • Hydrolysis rate and activation energy of Antheraea pernyi silk fiber treated with HCI were examined. Thermal decomposition temperature and surface morphology were also investigated by using differential scanning calorimeter and scanning electron microscope. As the concentration of hydrochloric acid and the treatment temperature increased, the hydrolysis occurred more rapidly. The activation energy of Antheraea pernyi, 74.0 kJ/mol, was higher than that of Bombyx mori, 58.1 kJ/mol. As the concentration of hydrochloric acid increases, the activation energy of Antheraea pernyi decreased from 74.0 kJ/mol to 62.0 kJ/mol. The shape of acid-resistance fraction of Antheraea pernyi became more distroyed and was transformed from fiber to powdered form with an increase of hydrolysis rate. The thermal decomposition temperature of Antheraea pernyi was 360.8$^{\circ}C$ until the hydrolysis rate was 81.8 wt%, but ti decreased to 347.0$^{\circ}C$ when the hydrolysis rate was 93.8 wt%.

  • PDF

Effects of Chemical Composition and Temperature for the Production of Volatile Fatty Acids During Anaerobic Decomposition Process of Marine Sinking Particles

  • PARK Young-Tae;Nishimura Masahiko;Ohwada Kouichi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.888-892
    • /
    • 1996
  • Anaerobic decomposition experiments were performed to know the effect of chemical composition and temperature for the production of volatile fatty acids (VFAs) from marine sinking particles. Sinking particles were obtained with sediment traps set in Aburatsubo Inlet, Kanagawa Prefecture, Japan, in February, May and August. Sinking particles collected in May were composed of higher fraction of chl. a than the other two months. February and May samples were used to perform the decomposition experiments. VFAs production rates were higher in May sample than February. The production rates increased with increase of incubation temperature, and order of production rates of four VFAs were acetate>n-butyrate>propionate>iso-butyrate at $10^{\circ}C\;and\;20^{\circ}C$. At $28^{\circ}C$, the production rate of propionate was higher than n-butyrate. Based on these results, it is considered that production of VFAs from sinking particles during anaerobic decomposition depends on the chemical composition and temperature.

  • PDF

Correlation analysis between climate indices and Korean precipitation and temperature using empirical mode decomposition : I. Data decomposition and characteristic analysis (경험적 모드분해법을 이용한 기상인자와 우리나라 강수 및 기온의 상관관계 분석 : I. 자료의 분해 및 특성 분석)

  • Ahn, Si-Kweon;Choi, Wonyoung;Kim, Taereem;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.197-205
    • /
    • 2016
  • Recently, natural hazards have occurred frequently due to climate change. The research need for predicting variability and tendency of precipitation and temperature has been increased. However, it is difficult to determine the characteristics of precipitation and temperature within a confidence range since they change due to complex factors with choppy and too many components. If their characteristics having more than one component are decomposed, then it can be useful for determining the variation of such characteristics more accurately. In this study, Korean precipitation and temperature were decomposed and their Intrinsic Mode Function (IMF) were extracted from Empirical Mode Decomposition (EMD). Finally, the characteristics of Korean precipitation and temperature data were analyzed in terms of periodicity and tendency.

Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed (카본블랙 촉매를 이용한 유동층 반응기에서 메탄의 직접 열 분해에 의한 수소생산 연구)

  • Jung, Jae-Uk;Nam, Woo-Seok;Yun, Ki-Jun;Lee, Dong-Hyun;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.284-287
    • /
    • 2005
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2 - free$ hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane decomposition reaction was carried out at the temperature range of $850-925^{\circ}C$, methane gas velocity of $1.0U_{mf}\;3.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed (카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구)

  • Lee, Seung-Chul;Yoon, Yong-Hee;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.57-60
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_{2}$ - free hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

Effects of controlled environmental changes on the mineralization of soil organic matter

  • Choi, In-Young;Nguyen, Hang Vo-Minh;Choi, Jung Hyun
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.347-355
    • /
    • 2017
  • This study investigated how the combined changes in environmental conditions and nitrogen (N) deposition influence the mineralization processes and carbon (C) dynamics of wetland soil. For this objective, we conducted a growth chamber experiment to examine the effects of combined changes in environmental conditions and N deposition on the anaerobic decomposition of organic carbon and the emission of greenhouse gases from wetland soil. A chamber with elevated $CO_2$ and temperature showed almost twice the reduction of total decomposition rate compared to the chamber with ambient atmospheric conditions. In addition, $CO_2$ fluxes decreased during the incubation under the conditions of ambient $CO_2$ and temperature. The decrease in anaerobic microbial metabolism resulted from the presence of vegetation, which influences the litter quality of soils. This can be supported by the increase in C/N ratio over the experimental duration. Principle component analysis results demonstrated the opposite locations of loadings for the cases at the initial time and after three months of incubation, which indicates a reduction in the decomposition rate and an increasing C/N ratio during the incubation. From the distribution between the decomposition rate and gas fluxes, we concluded that anaerobic decomposition rates do not have a significantly positive relationship with the fluxes of greenhouse gas emissions from the soil.

Hydrogen Activation and Carbon Dioxide Decomposition Using An Inorganic Recycling Resource (무기성 순환자원의 수소 활성화 및 이산화탄소 분해)

  • Park, Young-Koo;Ko, Jae-Churl;Jeon, Jae-Youl;Park, Joon-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.483-490
    • /
    • 2009
  • This research was conducted to estimate the characteristics of carbon dioxide decomposition using an inorganic sludge. The inorganic sludge was composed of high amount (66.8%) of $Fe_2O_3$. Hydrogen could be reduced with 0.247, 0.433, 0.644, and 0.749 at 350, 400, 450, and $500^{\circ}C$, respectively. The carbon dioxide decomposition rates at 250, 300, 350, 400, 450, and $500^{\circ}C$ were 32, 52, 35, 62, 75, and 84%, respectively. High temperature led to high reduction of hydrogen and better decomposition of carbon dioxide. The specific surface area of the sludge after hydrogen reduction was higher than that after carbon dioxide decomposition. The specific surface area of the sludge was more decreased with increasing of temperature.

Bench-scale Test of Sulfuric Acid Decomposition Process in SI Thermochemical Cycle at Ambient Pressure (SI 열화학싸이클 황산분해공정의 Bench-scale 상압 실험)

  • Jeon, Dong-Keun;Lee, Ki-Yong;Kim, Hong-Gon;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 2011
  • The sulfur-iodine (SI) thermochemical water splitting cycle is one of promising hydrogen production methods from water using high-temperature heat generated from a high temperature gas-cooled nuclear reactor (HTGR). The SI cycle consists of three main units, such as Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition. The feasibility of continuous operation of a series of subunits for $H_2SO_4$ decomposition was investigated with a bench-scale facility working at ambient pressure. It showed stable and reproducible $H_2SO_4$ decomposition by steadily producing $SO_2$ and $O_2$ corresponding to a capacity of 1 mol/h $H_2$ for 24 hrs.