• 제목/요약/키워드: decomposition products

검색결과 380건 처리시간 0.027초

습식 합성 Hydroxyapatite의 가열 분해성 (The Thermal Changes of Precipitated Hydroxyapatite)

  • 김창은;박훈;김배연;이동윤
    • 한국세라믹학회지
    • /
    • 제27권7호
    • /
    • pp.907-915
    • /
    • 1990
  • The hydroxyapatite powder was prepared by the precipitation method. The obtained powder was heat-treated and its products were investigated in order to characterize its decomposition process. The powder was Ca-deficient hydroxyapatite with no relation to the Ca/P mole ratio in the initial solution. The obtained hydroxyapatite was thermally decomposed into tricalcium phosphate [Ca3(PO4)2, TCP] after heat-treatment above 80$0^{\circ}C$ and the extent of the decomposition was dependent on the nonstoichiometry of obtained hydroxyapatite, and the resultant hydroxyapatite and tricalcium phosphate maintained stable forms up to 120$0^{\circ}C$. The hydroxyapatite powder had the better stability with the samller the nonstoichinometry of hydroxyapatite. And the quantities of tricalcium phosphate obtained after decomposition were decreased, and also the corresponding decomposition temperatures were increased with decreasing extent of nonstoichiometry in precipitated hydroxyapatite.

  • PDF

Mono-sodium ethylene glycolate에 의한 Poly(ethylene terephthalate) Film의 분해반응에 관한 연구 (Study on Decomposition Reactions of Poly(ethylene terephthalate) Films Treated with Mono-sodium Ethylene Glycolate)

  • Cho, Hwan;Huh, Man-Woo;Cho, In-Sul;Cho, Kyu-Min;Yoon, Hung-Soo
    • 한국염색가공학회지
    • /
    • 제2권3호
    • /
    • pp.26-35
    • /
    • 1990
  • This study was carried out with the view of fundamental investigating to improve the tactile and the hygroscopicity of Poly(ethylene Terephthalate) (PET)fibers. Mono-sodium ethylene glycolate in ethylene glycol (MSEG-EG) solution was prepared and PET films were treated with it. The following conclusions were obtained. When PET films were decomposed in MSEG-EG solution, decomposition rate constant showed an exponential relationship with treating temperature; activition energy was 23.30 Kcal/mol, activation enthalpy was 22.52~22.60 Kcal/mol and activation entropy was -29.20~ -29.41 e.u. On the basis of the results obtained above and structure identification of decomposition products, it was found that the decomposition reaction proceeded through ester interchange reaction.

  • PDF

Influence Regularity of Aluminum, Copper and Stainless-steel on SF6 PD Decomposition Characteristics Components

  • Zeng, Fuping;Luo, Jing;Tang, Ju;Zhou, Qian;Yao, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.295-301
    • /
    • 2017
  • $SF_6$ decomposition products can be used to detect partial discharge (PD), but the metal materials in a PD area can significantly affect $SF_6$ decomposition characteristics. Disregarding the effect of metal materials on such characteristics inevitably result in certain errors when using them to diagnose the internal insulation faults of gas-insulated switchgears. This paper investigates the influence regularity on the main stable decomposition components of $SF_6$ (namely $SO_2F_2$ and $SOF_2$) of the commonly metal materials uesd in GIS, such as aluminum (Al), copper (Cu) and stainless steel (SS). Firstly, an experimental platform is constructed to simulate $SF_6$ decomposition under a PD area, and the influence regularities of Al, Cu and SS on the concentration, formation rate and saturation time of $SO_2F_2$ and $SOF_2$ are obtained. Secondly, the influence mechanism of Al, Cu and SS are preliminary explored combined with the chemical activity of the metal materials.

비열플라즈마를 이용한 CF4 분해에 미치는 혼합가스의 영향 (Effect of Mixed Gases on Decomposition Characteristic of CF4 by Non-Thermal Plasma)

  • 박재윤;정장근;김종석;임근희
    • 한국전기전자재료학회논문지
    • /
    • 제15권6호
    • /
    • pp.543-550
    • /
    • 2002
  • In this paper, the $CF_4$ decomposition rate and by-product were investigated for two simulated plasma reactors which are metal particle reactor and spiral wire reactors as a function of mixed gases. The $CF_4$ decomposition rate by plasma reactor with metal particle electrode had a gain of 20~25% over that by plasma reactor with spiral wire electrode. The $CF_4$ decomposition efficiency increases with increasing applied voltage up to the critical voltage for spark formation. The $CF_4$ decomposition efficiency of metal particle reactor was about 80% at AC 24kV. The $CF_4$ decomposition rate used Ar-$N_2$ as base gas was the highest among three base gases of $N_2$, $Ar-N_2$, air. The by-products of the $N_2$, $N_2Ar$ base as were similar, but in case of air base they were different.

$CF_4$ 분해에 미치는 비열플라즈마 반응기 구조의 영향 (Effect of Non-thermal plasma Reactor construction by $CF_4$ decomposition)

  • 김선호;박재윤;하현진;황보국;김광수;임근회
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.912-916
    • /
    • 2002
  • In this paper, the $CF_4$ decomposition rate and by-product were investigated for a simulated two plasma reactors which are metal particle reactor and spiral wire reactor as function of mixed gases. The $CF_4$ decomposition rate by plasma reactor with metal particle electrode had a gain of 20~25[%] over that by plasma reactor with spiral wire electrode. The $CF_4$ decomposition efficiency increases with increasing applied voltage up to the critical voltage for spark formation. The $CF_4$ decomposition efficiency of metal particle reactor was about 80[%] at AC 24[kV]. The $CF_4$ decomposition rate used $Ar-N_2$ as base gas was the highest among three base gases of $N_2$, $Ar-N_2$, air. The by-products of the $N_2$, $Ar-N_2$ base as were similar, but in case of air base they were different.

  • PDF

고분자물질 바닥재의 열적특성에 관한 연구 (A Study on Thermal Characteristics on Polymeric Floorings)

  • 이내우;김남석;문병수
    • 한국안전학회지
    • /
    • 제21권6호
    • /
    • pp.38-45
    • /
    • 2006
  • Polymeric floorings mainly consisted of PVC are easily decomposed by many kinds of hot environmental factors, then generate hazardous asphyxiate gases and/or toxic gases etc. Therefore the mechanism of decomposition and quantitative toxic indices of products are very important for preventing safety and health disasters, especially in case of confined area. So we have investigated decomposition kinetics, numbers of process involved, toxicity indices of product and so on, using DSC, TGA, FT-IR and Pyrolyzer-GC/MS. The thermal decomposition process of polymeric floorings can be mainly divided by dehydrochlorinated reaction and polyene decomposition step, and activation energies of those are approximately $53.93{\sim}62.42kcal/mol$. Especially lethal concentration($LC_{50}$), fractional effective dose (FED) are calculated by measuring the amount of decomposition product. The values on $LC_{50}$ of sample G are ranged $2,003{\sim}2,019(mg/m^{3})$ in case of sample K and H are $1,877,\;1,998(g/m^{3})$ respectively. Even if the results are estimated by calculation method without animal test and/or clinical demonstration, these values could be very useful data for occupational health, hygiene and safety control.

유동층 반응기에서 카본블랙 촉매를 이용한 프로판의 촉매 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed)

  • 정재욱;남우석;윤기준;이동현;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.85-88
    • /
    • 2006
  • A fluidized bed reactor made of quartz with 0.055m I.D. and 1.0m in height was employed for the thermocatalytic decomposition of propane to produce $CO_2$-free hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The propane decomposition rate used carbon black N33O as a catalyst. The propane decomposition reaction was carried out at the temperature range of $600{\sim}800^{\circ}C$, paropane gas velocity of $1.0 U_{mf}\;3.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The carbon which was by-product of methane decomposition reaction was deposited on the catalyst surface that was observed by SEM. Resulting production in our experiment were not only hydrogen but also several by products such as methane, ethylene, ethane, and propylene.

  • PDF

광유 중 절연파괴전압의 분산과 절연파괴진전 과정의 분석 (Analysis of Breakdown Voltage Dispersion and Breakdown Process in Mineral Oil)

  • 임동영;박숭규;박철호;김기채;이광식;최은혁
    • 조명전기설비학회논문지
    • /
    • 제29권6호
    • /
    • pp.35-41
    • /
    • 2015
  • This paper presents a breakdown voltage and a process of breakdown progress in mineral oil under an quasi-uniform field with decomposition products which occur after the oil discharge. The breakdown voltage in the oil revealed the characteristics of dispersion regardless of an electrode gap. The cumulative probability distribution was used to analyze the dispersion of the breakdown voltage. In addition, the process of breakdown progress in the oil can be reasonably described by the electron breakdown theory based on both electrons emitted from the cathode and ions by field-aided dissociation of the oil. The proposed breakdown process will be used for the basic data to explain the behavior pattern of the decomposition product to cause the dispersion of the breakdown voltage.

탄소나노튜브 가스센서의 SF6 분해생성물 검출 및 확산현상에 관한 연구 (Detection with a SWNT Gas Sensor and Diffusion of SF6 Decomposition Products by Corona Discharges)

  • 이종철;정세훈;백승현
    • 한국진공학회지
    • /
    • 제18권1호
    • /
    • pp.66-72
    • /
    • 2009
  • 가스절연개폐장치 (Gas-insulated switchgear, GIS)의 내부에는 절연에 관한 이상 여부를 감시하고 판단할 수 있는 시스템이 요구된다. 부분방전에 의해 발생되는 $SF_6$ 분해생성물에 관한 단일벽 탄소나노튜브 (Single-walled carbon nanotube, SWNT)가 지닌 우수한 검출기능 때문에 SWNT를 이용한 가스센서 개발이 활발히 진행되고 있다. 하지만 아직까지 부분방전에 의해 발생된 분해생성물의 확산현상에 관한 해석적 연구는 미흡한 실정이다. 본 논문에서는 실험 데이터 및 상용 CFD (Computational Fluid Dynamics) 프로그램을 이용하여 SWNT 가스센서에 포획되는 분해생성물의 코로나 방전에 의한 발생 과정과 챔버 내부에서의 확산과정을 모델링하여 부분방전 발생 시 챔버 내부의 온도, 압력, 그리고 분해생성물의 농도 등을 수치계산하였다. 분해생성물의 시간당 질량생성율과 발생온도는 각각 $5.04{\times}10^{-10}$ [g/s]와 773 K이라 가정하였다. 농도방정식을 계산함에 있어 미지의 확산계수를 임의의 값으로 가정하여 직접 부여하는 방법을 사용하지 않고, 확산계수를 정의하는데 사용되는 Schmidt수의 값을 지정하여 확산계수가 $SF_6$ 가스의 물성치인 점성계수와 밀도의 함수로 계산되도록 하였다. 수치결과로부터 분해생성물의 농도구배가 확산을 일으키는데 주요 구동포텐셜 (Drive potential)이 됨을 확인하였다. 센서 설치위치가 부분방전 발생영역에서 멀리 떨어질수록 분해생성물 농도가 낮음을 알 수 있었고, 부분방전이 지속될수록 분해생성물의 농도가 증가함을 확인하였다. 다수의 센서를 챔버 내부에 설치하면 각 센서의 응답시간을 확인하여 PD 발생위치를 판단할 수 있을 것이고, 이를 통해 GIS 진단 및 유지보수에 관한 유용한 정보로 사용될 수 있을 것이다.

관형 Pt-라이닝 반응기를 이용한 가압 황산분해반응 (Decomposition of Sulfuric Acid at Pressurized Condition in a Pt-Lined Tubular Reactor)

  • 공경택;김홍곤
    • 한국수소및신에너지학회논문집
    • /
    • 제22권1호
    • /
    • pp.51-59
    • /
    • 2011
  • Sulfur-Iodine (SI) cycle, which thermochemically splits water to hydrogen and oxygen through three stages of Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition, seems a promising process to produce hydrogen massively. Among them, the decomposition of $H_2SO_4$ ($H_2SO_4=H_2O+SO_2+1/2O_2$) requires high temperature heat over $800^{\circ}C$ such as the heat from concentrated solar energy or a very high temperature gas-cooled nuclear reactor. Because of harsh reaction conditions of high temperature and pressure with extremely corrosive reactants and products, there have been scarce and limited number of data reported on the pressurized $H_2SO_4$ decomposition. This work focuses whether the $H_2SO_4$ decomposition can occur at high pressure in a noble-metal reactor, which possibly resists corrosive acidic chemicals and possesses catalytic activity for the reaction. Decomposition reactions were conducted in a Pt-lined tubular reactor without any other catalytic species at conditions of $800^{\circ}C$ to $900^{\circ}C$ and 0 bar (ambient pressure) to 10 bar with 95 wt% $H_2SO_4$. The Pt-lined reactor was found to endure the corrosive pressurized condition, and its inner surface successfully carried out a catalytic role in decomposing $H_2SO_4$ to $SO_2$ and $O_2$. This preliminary result has proposed the availability of noble metal-lined reactors for the high temperature, high pressure sulfuric acid decomposition.