• Title/Summary/Keyword: decomposition process

Search Result 1,265, Processing Time 0.032 seconds

Thermal Decomposition Energy of Liquid Crystalline Epoxy (열경화성 액정 에폭시 수지의 열분해 활성화에너지)

  • Seung Hyun Cho
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • A liquid crystalline thermosetting epoxy was synthesizes with DGE-DHMS and 1-Methyl Imidazole. To investigate thermal stability, activation energies for thermal decomposition were calculated via Flynn-Wall-Ozawa method and Kissinger method with the data obtained from TGA analysis. The result showed that there were no differences in thermal decomposition behavior between liquid crystalline phases and isotropic phase and also the same thermal decomposition mechanism was applied to the entire process.

Calculation of Mass-Heat Balance on the Iodine Crystallizer for SI Thermochemical Hydrogen Production Process (SI 열화학 수소 생산 공정 요오드 결정화기 열-물질 수지 계산)

  • Lee, Pyoung Jong;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • SI thermochemical hydrogen production process achieves water splitting into hydrogen and oxygen through three chemical reactions. The process is comprised of three sections and one of them is HI decomposition into $H_2$ and $I_2$ called as Section III. The production of $H_2$ included processes involving EED for concentrating a product stream from Section I. Additionally an $I_2$ crystallization would be considered to reduce burden on EED by removing certain amount of $I_2$ out of a process stream prior to EED. In this study, the current thermodynamic model of SI process was briefly described and the calculation results of the applied Electrolytes NRTL model for phase equilibrium calculations was illustrated for ternary systems of Section III. We calculated temperature and heat duty of an $I_2$ crystallizer and heat duty of heaters using UVa model and heat balance equation of simulation tool. The results were expected to be used as operation information in optimizing HI decomposition process and setting up material balance throughout SI process.

Decomposition Characteristics of Bisphenol A by a Catalytic Ozonation Process (오존촉매산화공정에 의한 비스페놀 A의 분해특성)

  • Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.463-469
    • /
    • 2015
  • Bisphenol A (BPA) in aqueous solution was measured using HPLC technique, which was established by acetonitrile analysis and KDP solution analysis methods. In these experiments the decomposition characteristics of BPA were compared using the ozone alone, ozone/pH 10, and ozone/hydrogen peroxide processes. About 70% of 10 mg/L of BPA was removed during 60 min by the ozone alone process, while 10 mg/L of BPA was completely removed by the ozone/pH 10 and ozone/hydrogen peroxide processes in 40 min and 60 min, respectively. The final decomposition efficiency drawn from results of TOC and HPLC analyses showed that the ozone/hydrogen peroxide process was the best among them, whereas the concentrations of TOC and reaction intermediates when using the ozone/pH 10 process were higher than those of the ozone alone process after 60 min of reaction. The ozone/hydrogen peroxide process was the most efficient among them when oxidizing organic carbons in water to $CO_2$ and $H_2O$.

A Study on the Decomposition of Dissolved Ozone and Phenol using Ozone/Activated Carbon Process (오존/활성탄 공정을 이용한 용존 오존 및 페놀의 분해에 관한 연구)

  • Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.490-495
    • /
    • 2012
  • The catalytic effect induced by activated carbon (AC) was evaluated during the phenol treatment using an ozone/AC ($O_{3}/AC$) process. In the case of the addition of AC to the ozone only process, the decomposition efficiency of dissolved ozone and phenol increased with increasing the amount of AC input. It was that the OH radical generated from the decomposition of dissolved ozone by AC had an effect on the removal of phenol. It was shown as the catalytic effect of AC ([$\Delta$phenol]/$[{\Delta}O_{3}]_{AC}$) in this study. The maximum catalytic effect was approximately 2.13 under 10~40 g/L of AC input. It approached to the maximum catalytic effect after 40 min of reaction with 10 and 20 g/L of AC input, while the reaction time reached to the maximum catalytic effect under 30 and 40 g/L of AC input was approximately 20 min. Moreover, the removal ratios of total organic carbon (TOC) for ozone only process and ozone/AC process were 0.23 and 0.63 respectively.

Photocatalytic Decomposition of Rhodamine B over PbMoO4 Oxides Prepared Using Microwave-assisited Process (마이크로파 공정으로 제조된 PbMoO4 산화물에서 Rhodamine B의 광촉매 분해 반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.178-183
    • /
    • 2015
  • Lead molybdate (PbMoO4) oxides were successfully synthesized using a conventional hydrothermal method and a microwave-assisted hydrothermal method. They were characterized by XRD, DRS, BET, Raman, SEM and PL. We also investigated the photocatalytic activity of these materials for the decomposition of Rhodamine B under UV-light irradiation. From XRD and Raman results, well-crystallized PbMoO4 crystals have been successfully synthesized regardless of preparation method and had 42~59 nm particle size. The PbMoO4 catalysts prepared using microwave-assisted process had the similar particle size and enhanced the photocatalytic activity when compared to that prepared by hydrothermal method. The PbMoO4 catalysts prepared under the irradiation of microwave for 75 min showed the highest photocatalytic activity. The PL peaks appears at about 530 nm at all catalysts and it was also shown that the excitonic PL signal is proportional to the photocatalytic activity for the decomposition of Rhodamine B.

Degradation of residual pharmaceuticals in water by UV/H2O2 advanced oxidation process (UV/H2O2 고도산화기술을 이용한 수중 잔류의약물질 제거)

  • Park, Chinyoung;Seo, Sangwon;Cho, Ikhwan;Jun, Yongsung;Ha, Hyunsup;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.469-480
    • /
    • 2019
  • This study was conducted to evaluate the degradation and mineralization of PPCPs (Pharmaceuticals and Personal Care Products) using a CBD(Collimated Beam Device) of UV/H2O2 advanced oxidation process. The decomposition rate of each substance was regarded as the first reaction rate to the ultraviolet irradiation dose. The decomposition rate constants for PPCPs were determined by the concentration of hydrogen peroxide and ultraviolet irradiation intensity. If the decomposition rate constant is large, the PPCPs concentration decreases rapidly. According to the decomposition rate constant, chlortetracycline and sulfamethoxazole are expected to be sufficiently removed by UV irradiation only without the addition of hydrogen peroxide. In the case of carbamazepine, however, very high UV dose was required in the absence of hydrogen peroxide. Other PPCPs required an appropriate concentration of hydrogen peroxide and ultraviolet irradiation intensity. The UV dose required to remove 90% of each PPCPs using the degradation rate constant can be calculated according to the concentration of hydrogen peroxide in each sample. Using this reaction rate, the optimum UV dose and hydrogen peroxide concentration for achieving the target removal rate can be obtained by the target PPCPs and water properties. It can be a necessary data to establish design and operating conditions such as UV lamp type, quantity and hydrogen peroxide concentration depending on the residence time for the most economical operation.

Estimation of a Transport and Distribution of COD using Eco-hydrodynamic Model in Jinhae Bay (생태계 모델을 이용한 진해만의 COD의 거동과 분포특성 평가)

  • Hong, Sok-Jin;Lee, Won-Chan;Jung, Rae-Hong;Park, Sung-Eun;Jang, Ju-Hyung;Kim, Hyung-Chul;Kim, Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1369-1382
    • /
    • 2007
  • To find proper water quality management strategy for oxygen consumption organic matters in Jinhae bay, the physical process and net supply/decomposition in terms of COD was estimated by three-dimensional eco-hydrodynamic modeling. The estimation results of physical process in terms of COD showed that transportation of COD was dominant in loading area from land to sea, while accumulation of COD was dominant in $middle{\sim}bottom$ level. In case of surface level, the net supply rate of COD was $0{\sim}60\;mg/m^2/day$. The net decomposition rate of COD was $0{\sim}-0.05\;mg/m^2/day$($-5{\sim}-10$ m, in depth) to 2 level, and $-0.05{\sim}-0.20\;mg/m^2/day(10m{\sim})$ to bottom level. These results indicate that the biological decomposition and physical accumulation of COD are occurred for the most part of Jinhae Bay bottom. The variation of net supply or net decomposition rate of COD as reducing land based input loading is also remarkable. Therefore, it is important to consider both allochthonous and autochthonous oxygen demanding organic matters to improve the water quality of Jinhae Bay.

유류오염 토양의 복원을 위한 열탈착 처리기술

  • 유동준;김영웅;박용규;오방일;구자공
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.111-114
    • /
    • 2001
  • Thermal desorption process is valuable for the remediation of oil contaminated site. The system is physical separation process by volatizing oil contaminants from soil matrixes and is not designed to provide high levels of oil destruction. The process is not incineration, because the decomposition of oil materials is not the desired result, although some decomposition may occur. The physical and chemical properties that influence the design and operation of the system include boiling points, soil sorption characteristics, aqueous phase solubility, thermal stability, contaminating oil concentration, moisture contents, particle size distribution and etc.

  • PDF

Modeling, simulation and control strategy for the fuel cell process (모델링 및 전산모사를 통한 연료전지공정의 제어전략에 관한 연구)

  • 이상범;이익형;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1012-1015
    • /
    • 1996
  • This study focuses on the optimal operation and control strategy of the fuel cell process. The control objective of the Phosphoric Acid Fuel Cell (PAFC) is established and dynamic modeling equations of the entire fuel cell process are formulated as discrete-time type. On-line optimal control of the MIMO system employs the direct decomposition-coordination method. The objective function is modified as the tracking form to enhance the response capability to the load change. The weight factor matrices Q,R, which are design parameters, are readjusted. This control system is compared with LQI method and the results show that the suggested method is better than the traditional method in pressure difference control.

  • PDF

A Study on Part Configuration Shape Synthesis for Process Planning in the Early Design Stage (제품개발 초기단계의 생산공정설계를 위한 기계부품의 외형형상 합성에 관한 연구)

  • 임진승;김용세;에릭왕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.899-904
    • /
    • 2003
  • Tight integration of product design and process planning in the early design stage would make bigger impact as wider spectrum of design and manufacturing alternatives can be pursued and evaluated. Thus the development of systematic computer-based support for this integration is desirable. For this integration and process planning in the early design stage. the systematic method to synthesize shape of part from functional requirements is crucial. This research presents the methods of functional decomposition from overall function or product and synthesizing shape of part based on functional relations extracted from functional decomposition using planetary gear transmission system as an example.

  • PDF